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Summary 

Introduction: Elevated plasma concentration of homocysteine (Hcy) has been considered as 

a candidate risk factor of cardiovascular disease (CVD), but lowering Hcy with B-vitamins 

has not been demonstrated to improve prognosis among CVD patients. It has thus been 

suggested that elevated Hcy serves only as a marker of underlying pathology, which prompts 

investigation into possible related mechanisms.  

The choline oxidation pathway is directly linked to remethylation of Hcy to 

methionine, and increased systemic concentrations of metabolites along this pathway have 

previously been linked to major lifestyle diseases, including CVD. Choline-related 

remethylation of Hcy yields dimethylglycine (DMG). Notably, DMG has been demonstrated 

to be a strong predictor of CVD events and mortality, independent of other risk markers such 

as elevated Hcy levels.  

The peroxisome proliferator-activated receptor (PPAR) α is a nuclear receptor and key 

regulator of energy metabolism which is activated by both dietary fatty acids and synthetic 

ligands such as fibrates. This receptor has recently been demonstrated to influence the genetic 

transcription of key enzymes of the choline oxidation pathway, and increased PPARα activity 

was thus suggested to be a possible underlying mechanism for the association between DMG 

and CVD.  

Objective: The aim of the current study was to investigate the relationship between PPARα 

and one-carbon metabolism, with emphasis on the choline oxidation pathway. Most of the 

reactions in the metabolic pathways discussed depend on B-vitamins as cofactors, and hence 

we also assessed the associations between PPARα activation and systemic markers of B-

vitamin status. A targeted metabolomic approach was implemented to investigate these 

relationships in a substudy of a long-term animal model.  

Methods: During 50 weeks, 30 male Wistar rats were randomized to receive ad libitum of 

either a low fat control diet, a high fat (HF) diet or a HF diet supplemented with 

tetradecylthioacetic acid (TTA), a pan-PPAR agonist with pronounced affinity towards 

PPARα. At the end of the study, the animals were sacrificed under non-fasting conditions. 

Blood was drawn by cardiac puncture and urine collected directly from the urinary bladder. 

Metabolite concentrations were determined by gas and liquid chromatography coupled to 

tandem mass spectrometry. The groups were compared by one-way ANOVA, and planned 
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comparisons versus the control group were made for both intervention groups. Cohen’s d 

effect sizes were calculated and reported for all comparisons, and d > 0.8 was considered a 

large effect. As the results were not adjusted for multiple comparisons, p-values < 0.01 were 

considered statistically significant. 

Results: When comparing TTA-treated animals to the control group, TTA-treated animals 

had statistically significantly higher plasma DMG (d=5.05), glycine (d=1.3), serine (d=1.99), 

cystathionine (d=1.52), nicotinamide (d=6.4), methylnicotinamide (d=4.05), methylmalonic 

acid (d=3.98) and pyridoxal (d= 2.73), whereas plasma riboflavin (d=-1.6) and flavin 

mononucleotide (d=-2.22) were lower. Urinary concentrations of DMG (d=1.98), sarcosine 

(d=1.16) and methylmalonic acid (d=1.89) were higher among TTA treated rats.  

When comparing HF to the control group, no statistically significant differences were 

observed on either plasma or urinary concentrations of one-carbon metabolites or markers of 

B-vitamin status. However, the small sample size may have impeded statistical significance, 

as some of the differences were considered large. No differences were observed in urine 

according to dietary fat intake. 

Conclusion: Long-term TTA treatment was associated with altered blood and urinary 

concentrations of one-carbon metabolites and markers of B-vitamin status in male Wistar rats. 

Particular large differences were observed for plasma DMG, NAM, mNAM and MMA, which 

were all higher among TTA-treated rats. Based on current and previous results, these effects 

are probably mainly mediated through PPARα. Our findings add to the evidence that one-

carbon metabolism may be regulated by PPARs, and these candidate biomarkers of PPARα 

activity may prove to supply useful information which could help identifying human 

subgroups who will have clinical benefit of certain nutritional advice. 
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1 Introduction          

1.1 One-carbon metabolism 

1.1.1 Homocysteine metabolism and transmethylation 

Homocysteine (Hcy) is a sulfur-containing amino acid formed by demethylation of the 

essential amino acid methionine (Met) [1]. In the cell, Hcy has two metabolic fates, namely 

remethylation back to Met and transsulfuration to form cysteine, and three metabolic 

pathways are involved in what is referred to as the Met-Hcy cycle (Figure 1). Remethylation 

of Hcy regenerates Met, and involves either the choline oxidation pathway or the folate cycle, 

respectively. Both remethylation pathways contribute about equal [2]. Folate-independent 

remethylation is catalyzed by betaine-homocysteine methyltransferase (BHMT; EC 2.1.1.5), 

which utilizes betaine, a choline oxidation metabolite, as the methyl donor [3-5], while 5-

methyltetrahydrofolate (mTHF) is the methyl donor for the folate-dependent remethylation 

carried out by the vitamin B12-dependent Met synthase (MS; EC 2.1.1.13) [6-9]. Both BHMT 

and MS contain zinc, which is important for binding and activation of Hcy [10, 11]. Hcy may 

also be irreversibly catabolized through the transsulfuration pathway [12, 13], which consists 

of two vitamin B6-dependent enzymes. First, cystathionine-β-synthase (CBS; EC 4.2.1.22) 

converts Hcy to cystathionine [14-16]. Second, cystathionine-γ-lyase (CGL; EC 4.4.1.1) 

hydrolyzes cystathionine forming cysteine [17, 18], the limiting factor for synthesis of the 

antioxidant glutathione [19]. CBS is an iron-containing enzyme [20], and contains an 

autoinhibitory domain which needs to be relieved for the enzyme to be activated [21]. 

The synthesis of Hcy from Met takes place during transmethylation reactions (Figure 

1). Transmethylation in general refers to the transfer of a methyl group from a methyl donor 

to a methyl acceptor, and these reactions are involved in both synthesis and modifications of a 

large variety of molecules throughout the body [22]. S-adenosylmethionine (SAM) is the 

main methyl donor for these reactions, and is formed by adenosylation of Met catalyzed by 

Met adenosyltransferases (EC 2.5.1.6). Transmethylation by various methyltransferases 

leaves S-adenosylhomocysteine (SAH) [23], which is subsequently hydrolyzed into Hcy [24]. 

The SAM:SAH ratio is often used as a measure of the intracellular methylation capacity [25]. 

It is generally believed that the synthesis of creatine and phosphatidylcholine are the major 

sources for Hcy production [26]. 
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Figure 1 Reactions of the methionine-homocysteine cycle and transmethylation .  Reaction 1 and 2 

represents the two remethylation pathways, responsible for regeneration of methionine from 

homocysteine. They involve the choline (1) and folate (2) metabolism, respectively. Reaction 3 and 4 

represents the transsulfuration pathway, responsible for catabolism of homocysteine. Reaction 5, 6 and 7 

represents synthesis of the methyl donor S-adenosylmethionine, transmethylation and subsequent 

production of homocysteine.  Abbreviations: BHMT, betaine-homocysteine methyltransferase; CBS, 

cystathionine-β-synthase; CTH, cystathionine-γ-lyase; DMG, dimethylglycine; Hcy, homocysteine; Met, 

methionine; mTHF, 5-methyltetrahydrofolate; MT’s, methyltransferases; SAH, S-adenosylhomocysteine; SAM, 

S-adenosylmethionine; THF, tetrahydrofolate. 

The coordination between the three metabolic pathways using Hcy as a substrate is regulated 

by diet and the need for methionine conservation [2]. It is demonstrated that the dietary 

supply of methyl groups such as from Met, choline or betaine affects the partitioning between 

remethylation and transsulfuration, increasing remethylation when dietary supply is curtailed, 

such as during protein restriction [27, 28]. These metabolic pathways are also regulated by 

redox status, where increased oxidative stress by oxidation of the zinc and iron atoms of the 

enzymes inhibits remethylation [29, 30] and activates transsulfuration [19]. 

When intracellular concentrations of Hcy increases, excess Hcy is exported to the 

blood compartment. In blood, the majority of Hcy is found bound to protein, less as a 

disulfide with other sulfur compounds whereas only minor amounts are free Hcy. Total Hcy 
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(tHcy) includes all forms, and elevated tHcy in blood is referred to as hyperhomocysteinemia 

[31]. With increasing tHcy concentrations, two molecules of Hcy may condense and form 

homocystine, which can be excreted in the urine, a condition labeled homocystinuria [32]. 

Taken together, the intracellular concentration of Hcy is determined as a result of the rates of 

production, remethylation and transsulfuration, and the tHcy concentration in blood is 

dependent on cellular release and renal excretion. 

Elevated plasma tHcy has consistently been linked to increased risk of cardiovascular 

disease (CVD) and coronary heart disease (CHD) [33]. Trials aiming to lower plasma tHcy 

with B-vitamins have, however, not yielded favorable results [34, 35], indicating that elevated 

tHcy should be regarded as a marker of underlying pathological mechanisms rather than a true 

causal risk factor [36]. This encourages investigation into alternative mechanisms which may 

explain the relationship between elevated tHcy and adverse prognosis. In addition to CVD 

including CHD, elevated tHcy has also been linked to a myriad of other adverse health 

outcomes like cancer [37], pregnancy complications [38], neural tube defects [39, 40], 

congenital defects of the heart [41], osteoporosis [42], Alzheimer’s disease and dementia [43, 

44], depression [45], cognitive decline [46], hyperinsulinemia [47] and type 2 diabetes [48].  

1.1.2 The choline oxidation pathway 

Choline is a water-soluble quaternary ammonium compound which can be obtained through 

diet or synthesized de novo by methylation of phosphatidyletanolamine catalyzed by the 

enzyme phosphatidyletanolamine N-methyltransferase (EC 2.1.1.17). In the body, choline is 

first and foremost found incorporated in phospholipids as phosphatidylcholine [49]. The 

dietary requirements for choline vary according to the capacity for de novo synthesis, and 

among dietary sources of choline are egg yolks, meat, soybeans, nuts and wheat [50]. Choline 

is oxidized through several steps (Figure 2), ultimately leading to the synthesis of glycine 

which can be interconverted with serine. The intermediate metabolites include betaine, 

dimethylglycine (DMG) and sarcosine [51]. The first metabolite, betaine, has two functions. 

Besides being the methyl donor for BHMT, it is an important osmolyte involved in the 

regulation of cell volume. Like choline, betaine is also found in the diet, and rich sources 

include wheat, spinach and vegetables of the beet family [52]. BHMT serves as a direct link 

between the choline oxidation pathway and Hcy remethylation, and accordingly, dietary 

intake of both choline and betaine has been demonstrated to lower plasma tHcy, as well as 

improving other CVD risk factors such as inflammation markers, although no significant 

vly005
Utheving

vly005
Utheving
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association between dietary choline/betaine and CVD incidence has been reported [53]. 

Induction of BHMT mRNA by betain-enriched diets has previously been demonstrated to be 

closely related to the production of hepatic apolipoprotein B and to increase the secretion of 

very-low-density lipoprotein from the liver, but with no subsequent alterations in circulating 

lipid levels [54]. 

 

Figure 2 The choline oxidation pathway.  Main metabolites are highlighted in bold text and enzymes in 

red color. Choline may be obtained from the diet or from endogenous synthesis. DMG, sarcosine, glycine 

and serine all donate a one-carbon unit which may leave the mitochondrion as formate. Abbreviations: 

BADH, betaine aldehyde dehydrogenase; BHMT, betaine-homocysteine methyltransferase; CHDH, choline 

dehydrogenase; DMG, dimethylglycine; DMGDH, dimethylglycine dehydrogenase; GCS, glycine cleavage 

system; GNMT, glycine N-methyltransferase; Hcy, homocysteine; Met, methionine; PC, phosphatidylcholine; 

PE, phosphatidyletanolamine; SAH, s-adenosylhomocysteine; SAM, s-adenosylmethionine; SARDH, sarcosine 

dehydrogenase; SHMT, serine hydroxymethyltransferase 

Choline is actively transported into the mitochondrion and converted to betaine by two 

enzymes, choline dehydrogenase (EC 1.1.99.1) and betaine aldehyde dehydrogenase (EC 

1.1.1.8) [55, 56]. Betaine diffuses to the cytosol and acts as the methyl donor in the BHMT-

mediated remethylation of Hcy, forming Met and DMG [4]. DMG diffuses into the 

mitochondrion, where two subsequent demethylation reactions form sarcosine and glycine, 

catalyzed by DMG dehydrogenase (DMGDH; EC 1.5.8.4) and sarcosine dehydrogenase 

(SARDH; EC 1.5.8.3), respectively [57]. In the cytosolic compartment, glycine N-
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methyltransferase (GNMT; EC 2.1.1.20) catalyzes a SAM-dependent methylation of glycine 

to form sarcosine [58]. This reaction is regarded an important mechanism in the regulation of 

methylation capacity, both by scavenging of excess methyl groups [59] and by producing 

SAH which inhibits methyltransferases [60]. Interconversion between glycine and serine, 

catalyzed by serine hydroxymethyltransferase (SHMT; EC 2.1.2.1) may also be regarded as a 

part of the choline oxidation pathway. Both a cytosolic [61] and mitochondrial [62] isoform of 

SHMT exist, referred to as SHMT1 and SHMT2, respectively. The methyl group derived 

from DMG, sarcosine and serine demethylation is transferred to folate and is further 

metabolized to formate which may leave the mitochondrion and enter the cytosolic one-

carbon pool, as illustrated in Figure 2 [63]. Glycine may also be catabolized through the 

trifunctional glycine cleavage system (EC 1.4.4.2, 2.1.2.10, and 1.8.1.4), ultimately yielding 

one molecule of formate [64].  

Circulating and urinary concentrations of metabolites in the choline oxidation pathway 

has previously been linked to major lifestyle diseases. Elevated whole blood or plasma 

choline concentrations were shown to be valuable predictors of cardiac events among patients 

with suspected acute cardiac syndrome [65, 66]. Furthermore,  high concentrations of plasma 

choline was recently associated with incident acute myocardial infarction among patients with 

stabile angina pectoris, primarily non-smokers [67]. Both the highest and lowest quintile of 

urinary betaine concentrations, as well as high plasma concentrations have been linked to 

increased risk of secondary events among CVD patients [68], and elevated urinary excretion 

of betaine was associated with diabetes in patients with stabile angina pectoris [69]. High 

plasma betaine concentration has also been suggested to be related to lower risk of colorectal 

cancer [70]. In a nested case-control study of prostate cancer, high circulating sarcosine and 

glycine concentrations were found to be associated with a modestly reduced risk [71]. 

However, in a recent report, a higher plasma sarcosine concentration was found to be 

associated with increased prostate cancer risk [72]. Elevated plasma concentrations of DMG 

has been strongly associated with increased risk of acute myocardial infarction as well as both 

all-cause and cardiovascular mortality among CVD patients, independent of traditional risk 

factors like plasma tHcy, lipid levels, smoking, hypertension, diabetes and impaired kidney 

function [73, 74]. Also, the metabolism of glycine and serine and its relation to one-carbon 

metabolism is a hot topic in modern cancer research [75]. 
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1.1.3 Folate-mediated one-carbon metabolism 

Folate is a water-soluble vitamin which is present in the cell as several interconvertible 

coenzymes. The reduced form of the vitamin, tetrahydrofolate (THF), is the main intracellular 

form, which can bind activated one-carbon moieties [76, 77]. In the diet, folate is naturally 

occurring in green leafy vegetables and certain legumes such as beans, soy and peanuts, but in 

large parts of the world the main dietary source is grain products, due to mandatory 

fortification with folic acid [76]. The intracellular metabolism of folate, illustrated in Figure 3, 

is referred to as the folate cycle, and takes place in the mitochondrion, the nucleus and the 

cytosolic compartment, where distribution of the different cofactor forms differ [78, 79]. 

Impairment of folate metabolism or folate deficiency are linked to an increased risk of several 

diseases, including neural tube defects and congenital heart defects, megaloblastic anemia, 

various cancers and CVD [80, 81].  

 

Figure 3 The cytosolic and mitochondrial folate cycle. Formate may cross the mitochondrial membrane 

and connects the cytosolic and mitochondrial folate metabolism. The different folate cofactors serve as 

one-carbon donors in purine and thymidylate synthesis, as well as in the remethylation of homocysteine. 

Abbreviations: Hcy, homocysteine; Met, methionine; MS, methionine synthase; MTHFD1, 

methylenetetrahydrofolate dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; SHMT1, cytosolic 

serine hydroxymethyltransferase; THF, tetrahydrofolate. 
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The predominant circulating form of folate is mTHF [82], but even though plasma folate is 

believed to reflect intracellular concentrations, plasma mTHF has not been demonstrated to 

correlate very well with neither tissue nor liver mTHF [83]. 

The folate cycle involves several enzymes which provide the different folate cofactor 

forms. A trifunctional enzyme complex, methylenetetrahydrofolate dehydrogenase 1 

(MTHFD1; EC 6.3.4.3, 3.5.4.9 and 1.5.1.5), catalyze three enzymatic reactions ultimately 

forming 5,10-methylenetetrahydrofolate (MTHF) from THF, using formate as the one-carbon 

source [84, 85]. Alternatively, MTHF may be formed from THF by the cytosolic SHMT1, 

using a one-carbon group from serine, a reversible reaction which also yields glycine [61, 86, 

87]. Mainly, two enzymes compete for MTHF as substrate. Thymidylate synthase use MTHF 

as a one-carbon source for thymidylate, and hence nucleotide, synthesis, whereas MTHF 

reductase (MTHFR) irreversibly reduces MTHF to form mTHF for Hcy remethylation [88-

90]. It has been demonstrated that MTHF derived from SHMT1 is preferentially used for 

thymidylate synthesis and not remethylation [91, 92]. The folate cycle is completed when 

mTHF donates its methyl group to Hcy, regenerating free THF [93]. Formate, provided by the 

mitochondrial folate cycle from sources such as the choline oxidation pathway, conversion of 

serine to glycine and glycine catabolism through the glycine cleavage system (Figure 2), is 

able to cross the mitochondrial membrane [63], and thus connects the mitochondrial and 

cytosolic folate metabolism.  

1.2 B-vitamins 

B-vitamins are water-soluble essential nutrients with a myriad of physiological functions as 

cofactors in enzymatic reactions. Some of these vitamins are of importance of this thesis, and 

will be presented in this chapter. 

1.2.1 Vitamin B2 

Vitamin B2, also known as riboflavin, is obtained from the diet mainly from eggs, dairy 

products such as milk or cheese, meat and some vegetables. In blood, riboflavin is transported 

bound to albumin and globulins [94]. However, after uptake to the cells, the vitamin is mainly 

found in its two cofactor forms; flavin mononucleotide (FMN) and flavin adenine 

dinucleotide, formed from riboflavin by the enzymes riboflavin kinase (EC 2.7.1.26) and 

flavin adenine dinucleotide synthetase (EC 2.7.7.2), respectively [95, 96]. These compounds 

act as coenzymes for numerous flavoproteins, and clinical signs of deficiency include growth 

retardation, hair loss, dermatitis and normocytic anemia [94].  
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1.2.2 Vitamin B3 

Vitamin B3 is known as niacin or nicotinic acid, and may be derived from the diet or from 

catabolism of the essential amino acid tryptophan, and dietary sources of niacin include meats 

and fish, cereals, vegetables and peanuts [97]. In its cofactor forms, nicotinamide dinucleotide 

(NAD) and NAD phosphate (NADP), vitamin B3 is essential for a vast number of enzymatic 

redox reactions [97]. Both β-oxidation of fatty acids and substrate oxidation in the Krebs 

cycle is dependent on NAD(P) as an electron carrier. NAD is formed from its precursors; 

nicotinamide (NAM) and nicotinic acid (NA), and the breakdown metabolite is N
1
-

methylnicotinamide (mNAM). Because half-life of plasma NAD is only a few seconds, 

measurement of the other vitamers and metabolites are used as a proxy for vitamin B3 status 

[97]. Deficiency of vitamin B3 is well known to cause Pellagra, which manifest as diarrhea, 

dermatitis and dementia. Also, pharmacological doses of niacin have been used to treat 

dyslipidemia [97]. 

1.2.3 Vitamin B6 

Vitamin B6 is a vitamin family which by acting as cofactors is involved in wide variety of 

enzymatic processes. Vitamin B6 is present in a number of foods, both of plant and animal 

origin, and among the main sources are meat, especially organ meat, fish and whole-grains.  

The different vitamin forms are pyridoxal (PL), pyridoxine and pyridoxamine, and the 

vitamin is mainly excreted in urine as pyridoxic acid (PA) [98]. The only active cofactor form 

is 5’-phosphorylated PL, pyridoxal-5’-phosphate (PLP). Several enzymes are involved in the 

regulation and interconversion of the different vitamin forms [99]. Notably, the production of 

PLP seems to be dependent on sufficient vitamin B2 status [100]. The most common marker 

of vitamin B6 status is plasma PLP concentration, but the total amount of circulating B6 

vitamers is frequently regarded a more precise measurement of B6 status [98]. Systemic 

vitamin B6 status has been inversely associated with both increased oxidative stress [101] and 

inflammation [102], which may be due to an increased demand for PLP during inflammation 

[103].  

1.2.4 Vitamin B12 

Vitamin B12, or cobalamin (Cbl), is a micronutrient primarily found in foods of animal 

origin, such as meat, fish, dairy and eggs [104]. The only known biological function of 

cobalamin is to serve as a cofactor for MS and methylmalonyl coenzyme A (CoA) mutase 
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(mut; EC 5.4.99.2) [6, 105-107], and deficiency of vitamin B12 thus leads to impaired 

enzyme activity.  

Cbl may exist in three different oxidation states, Cbl(I), Cbl(II) and Cbl(III), and once 

inside the cell, free Cbl(II) is necessary for cofactor formation. To produce its active 

cofactors, the free Cbl(II) needs to be reduced to the highly reactive Cbl(I) before oxidative 

alkylation with a methyl (methylcobalamin, MeCbl) or adenosyl (adenosylcobalamin, 

AdoCbl) group [108]. The intracellular processing of Cbl (Figure 4) is complex, and involves 

several chaperones [108, 109]. One of the central chaperones, the methylmalonic aciduria 

combined with homocystinuria type C (MMACHC) protein, is responsible for making free 

Cbl(II) available to the cell, a process that involves both vitamin B2 and glutathione [110-

113].  

Mut is catalyzing the catabolism of methylmalonyl-CoA, an end product in the 

metabolism of odd chained fatty acids, branched-chained amino acids and cholesterol, to 

succinyl-CoA which can enter the citric acid cycle [104]. During cobalamin deficiency 

methylmalonyl-CoA is metabolized to methylmalonic acid (MMA).  

MS is the only known enzyme to accept the methyl group of mTHF, thus uniquely 

linking folate and Cbl metabolism [93]. MS reductase (MSR; EC 1.16.1.8) is an enzyme 

crucial for the initial methylation forming MS bound MeCbl [114]. The methyl group is then 

transferred to Hcy, leaving MS-bound Cbl(I) ready to accept another methyl group from 

mTHF [115, 116]. Because of the reactive nature of Cbl(I), spontaneous oxidation to Cbl(II) 

occurs in about one out of every 2000 catalytic cycles through MS [117]. MSR is then 

necessary to reactivate the MS-Cbl(II) complex [114]. MSR, in combination with the 

reducing factor NADP, is shown to be sufficient to reactivate the MS complex after such 

oxidation [118]. 

Both blood or urinary MMAand elevated tHcy can be used as clinical markers of Cbl 

deficiency [104]. Circulating cobalamin is not necessarily a good marker of B12 status; a 

study among patients with diabetes demonstrated this by showing that circulating cobalamin 

did not reflect the intracellular status as measured by red blood-cell cobalamin, serum MMA 

and methylation status in these patients, [119]. The authors suggested this to be due to a 

metabolic B12 deficiency or B12 resistance, indicating that a functional Cbl deficiency may 
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be caused by disturbances in the intracellular Cbl metabolism and not related to circulating 

Cbl concentrations. 

 

Figure 4 Intracellular cobalamin metabolism and cofactor generation.  Abbreviations: AdoCbl, 

Adenosylcobalamin; ATR, Adenosyl transferase; BCAA, Branched-chained amino acids; Cbl, Cobalamin; 

CNCbl, Cyanocobalamin; Hcy, Homocysteine; MeCbl, Methylcobalamin; Met, Methionine; MMA, 

methylmalonic acid; MMACHC, methylmalonic aciduria combined with homocystinuria type C protein; MS, 

Methionine Synthase; MSR, Methionine Synthase Reductase; MS·MeCbl, Ms-bound MeCbl; MS·Cbl, MS-

bound cobalamin; mTHF, Methyltetrahydrofolate; OCFA, Odd-chained fatty acids; SAH, S-Adenosyl 

Homocysteine; SAM, S-Adenosyl Methionine; THF, Tetrahydrofolate  

1.2.5 B-vitamins and one-carbon metabolism 

Folate, B6 and B12 status is known to influence plasma tHcy [120], but other B-vitamins are 

also involved as cofactors for reactions in the metabolic pathways related to one-carbon 

metabolism. Related to folate-dependent remethylation, vitamin B2 and B3 are important 

cofactors for both MSR [114, 118] and MTHFR [89]. In the transsulfuration pathway, both 

CBS and CGL are dependent on PLP [121, 122]. In the synthesis of betaine from choline, 

CHDH contains B2 [123] whereas BADH utilizes B3 [56]. Subsequently, during DMG 

catabolism, both DMGDH and SARDH are flavoproteins dependent on vitamin B2 [124], 

which also transfer a one-carbon unit from their substrates to folate [125]. Both cytosolic and 
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mitochondrial SHMT are dependent on vitamin B6 and also transfers a one-carbon unit from 

serine to folate [61, 62]. An illustration of all discussed metabolic pathways and the B-vitamin 

cofactors are provided in Figure 5. 

 

Figure 5 Illustration of relevant metabolic pathways, enzymes and B-vitamin cofactors. Abbreviations: 

BADH, betaine aldehyde dehydrogenase; BHMT, betaine-homocysteine methyltransferase; Cbl, cobalamin; 

CBS, Cystathionine-β-synthase; CGL, cystathionine-γ-lyase; CHDH, choline dehydrogenase; DMG, 

dimethylglycine; DMGDH, dimethylglycine dehydrogenase; GNMT, glycine N-methyltransferase; MS, 

methionine synthase; MSR, methionine synthase reductase; mTHF, 5-methyltetrahydrofolate; MTHF, 5,10-

methylenetetrahydrofolate; MTHFD1, methylenetetrahydrofolate dehydrogenase; MTHFR, 

methylenetetrahydrofolate reductase; SARDH, sarcosine dehydrogenase; SHMT, serine 

hydroxymethyltransferase   

1.3 Peroxisome proliferator-activated Receptors 

1.3.1 PPARs are nuclear receptors 

Nuclear receptors are ligand-activated transcription factors which connect the cellular 

environment to the genome. The nuclear receptors are classified into three groups, the 

endocrine receptors, the orphan receptors and the adopted orphan receptors. These receptors 

share a common structure, and respond to hormones, vitamins or other signal molecules, 

which act as ligands. The NR-ligand-complex then binds to specific sequences on DNA called 

hormone responsive elements, and this mechanism is involved in regulation of gene 
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expression [126]. Peroxisome proliferator-activated receptors (PPARs) belong to the adopted 

orphan receptors [127], and their ability to become activated by peroxisome proliferators, 

hypolipidemic drugs known to result in proliferation of peroxisomes and liver hyperplasia in 

rodent models, was the basis for their identification in 1990 [128]. The PPARs exists either as 

the α, β/δ or γ subclass, respectively, being encoded by different genes [129], and the subtypes 

are activated by a large variety of natural and synthetic ligands [130]. Common for all PPAR 

subtypes is the requirement to form a heterodimer with another nuclear receptor, the retinoid-

X-receptor, to be able to bind the PPAR responsive elements on target genes [131].  

The PPARs are involved in a variety of metabolic functions, mainly fatty acid and 

glucose metabolism, as well as inflammation and other cellular processes like differentiation 

[129]. Because of this, synthetic ligands for PPARs have frequently been utilized in the 

treatment of metabolic conditions such as dyslipidemia, atherosclerosis, insulin resistance and 

diabetes mellitus [126]. Even though the three subtypes share a high degree of homology, 

their differences in ligand specificity and tissue distribution constitute the basis for subtype-

specific functions. PPARα augments fatty acid catabolism and apolipoprotein synthesis, and 

is highly expressed in liver, heart, muscle and kidneys [126]. PPARγ stimulates lipid storage 

and improves insulin sensitivity, and is mainly expressed in adipose tissue [126]. PPARβ/δ 

promotes fatty acid oxidation in the mitochondrion [126]. Among PPARs, the main focus of 

this thesis is on PPARα, which is suggested to have a regulatory role in one-carbon 

metabolism related pathways, which will be discussed further.  

1.3.2 PPARα 

PPARα is regarded a key regulator of all aspects of energy metabolism [132], with a vast 

amount of identified target genes [133]. It is activated by natural ligands such as fatty acids 

and their derivatives [134], and is well known for its role in lipid metabolism, where it 

upregulates the expression of genes encoding important enzymes involved in both 

peroxisomal and mitochondrial β-oxidation [135]. PPARα also has ramifications to glucose 

metabolism, by activation of gluconeogenetic and suppression of glycolytic genes in the liver 

[136]. Mice who are PPARα-deficient develop metabolic abnormalities like hypoglycemia, 

hypoketonemia and fatty liver when fasted, an observation underlining the role of PPARα in 

managing of energy stores and adaptations to the fasting state [136, 137]. Recently, a role of 

PPARα in amino acid metabolism has been demonstrated, and PPARα may thus act as a 

regulator of energy metabolism by coordinating the utilization of all the three different energy 
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substrates [138]. In addition to affecting energy metabolism, PPARα is known to carry anti-

inflammatory [139, 140] and anti-oxidative properties [141-143].  

PPARα mRNA is demonstrated to increase throughout the day, closely following the 

diurnal rhythm of the corticosterone, a glucocorticoid shown to increase the genetic 

expression of hepatic PPARα [144]. However, even though the amount of PPARα protein 

correlated strongly with PPARα expression, no increase in target gene expression was seen 

unless the animals were simultaneously treated with a PPARα ligand [144]. In rats, maternal 

protein restriction has been demonstrated to increase PPARα expression in the offspring, 

which was followed by increased expression of PPARα target genes [145]. Interestingly, the 

flux through BHMT also seems to influence the transcription of PPARα. Studies in mice have 

demonstrated that betaine supplementation, while decreasing the hepatic concentrations of 

betaine, increase the genetic transcription of PPARα by demethylation of the promoter region 

on the PPARα gene [146]. Also, HF feeding among mice has been demonstrated to stimulate 

flux through BHMT, and this also increased PPARα expression [147]. 

Interestingly, it was suggested that only fatty acids synthesized in the liver or derived 

from the diet, but not those derived from the fat stores throughout the body, activate hepatic 

PPARα [136]. A recent investigation has identified the endogenously synthesized 

phospholipid 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC), produced 

by the enzyme fatty acid synthase (EC 2.3.1.85), to be a physiological relevant ligand for 

PPARα [148]. Besides the natural ligands, PPARα is activated by several synthetic ligands 

like fibrates, a class of drugs used to treat dyslipidemia, and WY14,643, which specifically 

activate PPARα [134]. Finally, PPARα may be activated by modified fatty acids like the pan-

PPAR agonist tetradecylthioacetic acid (TTA), the ligand being administered in the current 

investigation [134]. 

1.3.3 Tetradecylthioacetic acid, a pan-PPAR agonist 

TTA is a modified 16-carbon saturated fatty acid, with a sulfur atom on the third carbon of the 

fatty acid chain [149]. TTA is a pan-PPAR agonist shown to stimulate all PPAR subtypes, but 

seems to have a particular high affinity towards PPARα [134, 150, 151]. TTA inhibits fatty-

acyl-CoA dehydrogenase (EC 1.3.8.7) which catalyzes the first step in mitochondrial β-

oxidation of fatty acids [134, 152]. Thus, it was suggested that TTA in addition to act as a 

ligand, activates PPARα as a metabolic inhibitor, facilitating accumulation of an endogenous 

ligand [134]. Such a ligand might be 16:0/18:1-GPC. Previous findings associated with TTA 
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treatment include reduced weight gain despite higher feed intake [153], reduced markers of 

oxidative damage [149] and inflammation [154], altered plasma levels of amino acids [155] 

and tissue-specific alterations in lipids and fatty acid composition [156]. 

1.3.4 PPARα and one-carbon metabolism 

Several studies have suggested a role of PPARα in the regulation of one-carbon metabolism. 

Lipid lowering therapy with fibrates is consistently associated with elevated tHcy among 

patients with the metabolic syndrome [157], but the underlying mechanisms for this 

observation has not been fully elucidated. The association between betaine supplementation 

and PPARα expression is another noticeable link between the receptor and the choline 

oxidation pathway [146].  

 

Figure 6 Enzymes of one-carbon metabolism downregulated by PPARα. Animal models have suggested 

PPARα activity to reduce the genetic transcription of several enzymes in the transsulfuration and the 

choline oxidation pathway. Abbreviations: BHMT, betaine-homocysteine methyltransferase; CBS, 

cystathionine-β-synthase; CGL, cystathionine-γ-lyase; DMG, dimethylglycine; DMGDH, dimethylglycine 

dehydrogenase; GNMT, glycine N-methyltransferase; MS, methionine synthase; PPARα, peroxisome 

proliferator-activated receptor α; SHMT, serine hydroxymethyltransferase; SARDH, sarcosine dehydrogenase. 

In a rat model, using the highly specific PPARα agonist WY 14.643, Sheikh et al 

demonstrated reduced genetic transcription of genes encoding central enzymes in both the 

transsulfuration and the choline oxidation pathways, namely CBS, CGL, DMGDH, SARDH 

and GNMT [158]. Treatment with WY14.643 was associated with lower protein levels of 
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SARDH and CGL in mice, as well [159]. Findings from a recent proteomic investigation 

among rats from the same study as those in the current thesis were in support the suggested 

relationship between PPARs and one-carbon and choline metabolism. Rats treated with TTA 

had lower protein levels of DMGDH and SARDH compared to control [160], which is in 

accordance with what is seen when more specific PPARα agonists are administered, 

suggesting this to be a PPARα effect. Moreover, the association between increased plasma 

DMG concentrations and adverse cardiovascular prognosis was suggested to partly depend on 

PPARα mediated interference with DMG catabolism [73, 74]. Figure 6 summarizes these 

previously demonstrated links between PPARα and one-carbon metabolism. 

Due to its close relation to the flux through the choline oxidation pathway as well as 

the glycolysis, another source of serine and glycine [161], it is reasonable to suggest that 

PPARα also influences the production of formate by these two pathways and thereby has an 

impact on folate metabolism. However, so far no studies have reported any potential direct or 

indirect regulatory role of PPARα in the folate cycle. 

1.4 Aims of the investigation 

Circulating and urinary concentrations of several one-carbon metabolites, both belonging to 

Hcy metabolism and the choline oxidation pathway, have been associated with disease risk. 

However, determinants of systemic one-carbon metabolites are not fully elucidated, but as 

suggested, a role of PPARs, and PPARα in particular, seems plausible. Thus, the aim was to 

investigate the association of PPAR activation and circulating and urinary concentrations of 

one-carbon and choline oxidation metabolites as well as markers of B-vitamin status. We 

explored this in male Wistar rats treated with a low-fat control diet or a high-fat (HF) diet 

with or without the pan-PPAR agonist TTA.   
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2 Methods 

2.1 Animals 

Male Wistar rats, 8-10 weeks old at arrival, were obtained from Taconic Europe A/S 

(Bomholt, Denmark). The animals were housed five per cage and maintained at a constant 12 

h light/dark cycle at a temperature of 22± 1°C and relative humidity of 55% ± 10%. After 

arrival, the rats were acclimatized for one week, with free access to standard chow and water.  

After 50 weeks, 4-6 h into the light cycle, the animals were sacrificed under non-

fasting conditions, anaesthetized by Isofluorane (Forane, Abbott Laboratories, Abbott Park, 

IL,USA) inhalation. Blood was drawn by cardiac puncture and collected in BD Vacutainer 

tubes containing EDTA (Becton-Dickinson, Plymouth, UK). Urine samples were collected 

directly from the urinary bladder. 

The current investigation is a substudy from a long-term study of male Wistar rats 

which originally set out to explore the effect of TTA and/or fish oil on incidence ventricular 

cancer [162]. 

2.2 Diets 

For the study period of 50 weeks, 30 rats were randomly attributed one of three diets:  1) A 

low fat control diet (LF) with 7% fat (5% lard, 2% soybean oil, w/w); 2) A HF diet with 25% 

fat (23% lard, 2% soybean oil, w/w); 3) A HF diet with 25% fat supplemented with TTA 

(22.6% lard, 2% soybean oil, 0.4% TTA, w/w). All diets were isoenergetic and isonitrogenous 

(20% protein, w/w), and the rats ate ad libitum. Casein (Tine BA, Oslo, Norway) was used as 

the protein source. Fat sources were lard (Ten Kate Vetten BV, Musselkanaal, Netherlands) 

and soybean oil (Dyets Inc., Bethlehem, Pa, USA). TTA was provided by the Lipid Research 

Laboratory, Section of Medical Biochemistry, University of Bergen, Bergen, Norway. The 

rest of the ingredients (cornstarch, sucrose, fiber, AIN-93 G mineral mix, AIN-93 vitamin 

mix, L-cysteine and choline bitartrate) were obtained from Dyets Inc. (Betlehem, Pa, USA), 

with the exception of Tert-butyl-hydroquinon (Sigma-Aldrich, St. Louis, MO, USA). The pellets 

were made by Nofima Ingredients, Bergen, Norway, and the diets are described in detail in 

Table 1. 
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Table 1 Composition of diets. 

Ingredient (g/kg) Low fat High fat TTA 

Lard 50 230 226.3 

Soybean Oil 20 20 20 

TTA - - 3.75 

Casein 156.0 196.9 196.9 

Cornstarch 572 397 397 

Sucrose 100 100 100 

Fiber 50 50 50 

AIN-93G mineral mix 35 35 35 

AIN-93 vitamin mix 10 10 10 

L-cysteine 3 3 3 

Choline bitartrate 2.5 2.5 2.5 

Tert-butyl-hydroquinone 0.014 0.014 0.014 

KH2PO4, monobasic 1.3 1.3 1.3 

Energy content (kcal/kg diet) 3841 5569 5569 

Fat E% 16 40 40 

Protein E% 14 24 24 

Carbohydrate E% 70 36 36 
Abbreviation: TTA, tetradecylthioacetic acid. 

2.3 Quantification of metabolites 

All one-carbon metabolites and B-vitamin analyses were performed at Bevital A/S, Bergen, 

Norway (http://www.bevital.no). The blood samples were put on ice immediately, and within 

2 hours the samples were stored at -80°C until analysis, which for most metabolites were 

conducted in 2010. Separation of plasma from red blood cells, protein precipitation and 

extraction were done using a robotic workstation (Hamilton Microlab AT Plus, Reno, NV, 

USA), and the metabolites were quantified using gas chromatography or liquid 

chromatography coupled to tandem mass spectrometry (GC-MS/MS, LC-MS/MS) or 

microbiological assays which will be described in the following paragraphs. Table 2 provides 

an overview of analytical platforms and metabolites. 
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Table 2 Analytical platforms, methods and analytes 

Platform Method Plasma metabolites Urine Metabolites 

B GC-MS/MS 

tHcy Cysteine 

Glycine Cystathionine 

Serine Serine 

MMA Glycine 

 
MMA 
Sarcosine 

C LC-MS/MS 

Choline Methionine 

Betaine Choline 

DMG Betaine 

Methionine DMG 

Cysteine 
 

Cystathionine 
 

D LC-MS/MS 

Riboflavin   

Flavin mononucleotide 
 

Nicotinamide 
 

N1-Methylnicotinamide 
 

Nicotinic Acid 
 

Pyridoxal 
 

Pyridoxal-5-phosphate 
 

4-Pyridoxic acid 
 

F 
Microbiological  

Assays 

Folate   

Cobalamin 
 

Abbreviations: DMG, dimethylglycine; MMA, methylmalonic acid 

2.3.1 Platform B: Gas Chromatography-Tandem mass spectrometry 

Platform B is developed from an automated isotope-dilution GC-MS assay (Platform A), 

originally developed for the simultaneous determination of MMA, tHcy and related amino 

acids [163]. Platform B is distinguished form platform A by the use of MS/MS [164], which 

allows for a more precise quantification of an extended repertoire of metabolites, and all 

metabolites previously determined on platform A is now determined on platform B.  

On the microtiter plates, 100 µL of plasma samples were mixed with D,L-

dithioerytritol (25 µL) and incubated for 20 minutes. To deproteinize the samples, ethanol 

(450 µL), containing deuterated internal standards, was added. Samples were then centrifuged 

for 3 min at 5800 g and moved to an empty microtiter plate. 300 mL water, 50 µL pyridine 

and 250 µL of toluene (200 mL/L) were added by repeated pipetting. The samples were 

incubated for 6 minutes, before an aliquot of the toluene layer was analyzed by GC-MS/MS (a 
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Thermo Finnigan trace GC ultra-system coupled to a Fisons MD800 mass spectrometer used 

in electron ionization mode). 

Samples were injected through a CP Sil 24-CB low-bleed/MS capillary column 

(Varian) at a temperature of 75°C, which was increased to 85°C (1 min) and then 290°C (2 

min). Helium was used as carrier gas, and infused at a rate of 1.1-2.2 mL/min. Analytes were 

quantified using the area ratios of analytes to the deuterated internal standards and calibrator 

samples with known concentrations. Within- and between-day CV ranged from 0.7-8.1% for 

all analytes. 

2.3.2 Platform C: Liquid chromatography – Tandem mass spectrometry 

Platform C  is a modified version of a previously published method based on LC-MS/MS 

[165]. A robotic device (Plato 7; RoSyst Anthos) mixed 30 µL of the samples with three 

volumes of acetonitrile which contained a mixture with 10 µL of all internal standards. 

Samples were centrifuged at 5800 g for two minutes, and the supernatant transferred to sealed 

autosampler glass vials (Chromacol) or microtiter plates (Costar).  

A HPLC system (Agilent Technologies, CA, USA) with a thermostated autosampler 

and degasser introduced the samples to an ether-linked phenyl reversed-phase column, which 

replaced the silica column used in the original method. A triple quadrupole tandem mass 

spectrometer (API 3000, Applied Biosystems, MDS SCIEX, CA, USA) with Turbo Ion Stray 

interface was used in the positive-ion mode for detection of analytes. Within- and between-

day CV was 2.1-8.8% for all analytes.  

2.3.3 Platform D: Liquid chromatography – Tandem mass spectrometry 

Platform D is a LC-MS/MS based method for detection of vitamin B2, B3 and B6, plus 

metabolites in the tryptophan-niacin pathway [166]. Plasma (60 µL) was first deproteinized 

by mixing with trichloroacetic acid (60 g/L) in water, which also contained all labeled internal 

standards. The solution was, after 60 min incubation on ice, centrifuged (5796 g at 4°C for 15 

min), before 60 µL of supernatant was transferred to a cooled autosampler (8°C) protected 

from light.  

Separation was performed by a HPLC system (Agilent Technologies, CA, USA), 

where 50 µL of deproteinized plasma is injected into a stable-bond C8 reverse-phase column 

(Zorbax) at 40°C. Concentrated acetic acid (650 mmol/L) was present in the mobile phase.  A 

triple-quadrupole tandem mass spectrometer (API 4000, Applied Biosystems, MDS SCIEX) 
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with electrospray ionization source was used in multiple reaction positive ion mode for 

detection of analytes. Within- day CV was <10% for all analytes, and slightly higher values 

were obtained for between-day CV’s.  

Platform D is later developed to also determine Vitamin B3 metabolites, which were 

analyzed in 2013.  

2.3.4 Platform F: Microbiological assays 

Serum folate and cobalamin were measured by microbiological assays [167, 168]. Cobalamin 

was estimated using a resistant strain of bacteria (Lactobacillus leichmannii, NCIB 12519) 

[167]. Serum was first diluted (1:10) with a buffer containing 8.3 mmol/L of sodium 

hydroxide, 20.7 mmol/L of acetic acid and 0.45 mmol/L of sodium cyanide, with a pH of 4.5. 

Samples were mixed, autoclaved (115°C for 10 minutes) and centrifuged at 1000 g for 10 

minutes. The supernatant were transferred to the microtiter plates. After mixing with the 

culture broth containing the resistant bacteria and incubation for 20 hours at 37°C, the plates 

were determined by spectrophotometry at 595 nm.  The determination of serum folate is built 

on the same method, using a different strain of resistant bacteria (Lactobacillus casei, NCIB 

10463). The microtiter plates were incubated at 27°C for 42 hours, and then read at 590 nm 

on the plate reader [168].  

2.4 Statistical analysis and presentation of data 

The data was explored according to intervention groups, and tested for normality using the 

Kolmogorov-Smirnov test. The results are presented as means (standard deviations; SD) for 

each group, and the groups were compared by one-way analysis of variance (ANOVA) . The 

assumption of homogeneity of variance was tested using Levene’s test, and where 

heteroscedasticity was observed, Brown-Forsythe F statistic were reported. A statistically 

significant F-statistic would indicate a between-group difference for the actual metabolite. To 

further investigate which group differed significantly from the others, planned comparisons 

were performed where both intervention groups were compared towards the control group. 

Post hoc tests were also performed to verify the planned comparisons where all groups were 

compared to each other. Dunnet’s test was chosen for the metabolites with homogeneity of 

variance, whereas Dunnet’s T3 test was performed where heteroscedastic variance across the 

groups was observed.  
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To measure the size of the effect, Cohen’s d effect sizes were calculated for all 

planned comparisons. Cohen’s d was calculated using Equation 1,  and a d > 0.8 was 

considered a large effect [169]. Cohen’s d represents the difference between two groups 

expressed in pooled SD units. The pooled SD was calculated by Equation 2. 

 

(Eq. 1)       
 ̅    ̅ 
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The concentration of urinary metabolites was corrected for urine concentrations of 

creatinine, to adjust for any potential dilution. To evaluate the relationship between blood and 

urinary concentrations of metabolites, Pearson’s correlation coefficients were calculated, and 

bootstrapped 95% confidence intervals were provided as these are robust for any violation of 

the assumption of normality [170].  

Because the results are not adjusted for multiple comparisons and the planned 

comparisons are non-orthogonal, the level of statistical significance was set to p<0.01. 

Statistics were performed by using IBM SPSS Statistics for Windows, version 21 (SPSS Inc., 

Chicago, IL, USA). 

2.5 Ethical statement 

The animal experiments were designed to comply with the Guidelines for the Care and Use of 

Experimental Animals and the study protocol was approved by the Norwegian State Board for 

Biological Experiments with Living animals. 
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3 Results 

All plasma metabolites were available for all 10 animals in each group. However, in the case 

of urinary samples, the groups were not completely equal. In the control group, 9 results were 

available for urine concentrations of methionine, choline, betaine and DMG, while 8 results 

were obtained for tHcy, cystathionine, cysteine, sarcosine, glycine, serine and MMA. In the 

HF group, all urinary specimens were available for 9 animals, while 8 values were obtained 

for all analytes among TTA treated rats. Mean (±SD) metabolite concentrations and results 

from the ANOVA and the planned contrasts for all blood and urinary metabolites are 

presented in the enclosed manuscript Tables 1 and 2, respectively. The correlations and 

accompanying confidence intervals between blood and urinary concentration of metabolites 

are presented in the enclosed manuscript Table 3. In the following paragraphs, a short 

summary of the results from the planned contrasts will be presented, and Figures 6-12 provide 

bar plots that illustrate the differences between the intervention groups compared to the 

control group.  

3.1 Plasma concentration of metabolites 

Among plasma one-carbon metabolites, TTA treatment was associated with trends toward 

higher tHcy and lower methionine concentrations (Figure 7). Furthermore, significantly 

higher concentration of cystathionine was observed among the TTA treated animals, but 

plasma cysteine did not differ between the groups. The HF diet was not associated with any 

differences on these metabolites.  

 

Figure 7 Results on plasma concentrations of one-carbon metabolites. The dashed lines represent Cohen’s 

d = 0.8, and the asterix indicates statistical significance. 
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Along the choline oxidation pathway, higher plasma concentrations of DMG, glycine and 

serine were observed among TTA treated animals (Figure 8). A particular large difference 

was observed for plasma DMG. Again, the HF diet alone was not associated with any major 

between-group differences, apart from a trend towards lower concentration of plasma choline 

(p=0.057).  

  

 

Figure 8 Results on plasma concentrations of choline and its oxidation products The dashed lines 

represent Cohen’s d = 0.8, and the asterix indicates statistical significance. Abbreviation: DMG, 

dimethylglycine. 

 

Several between-group differences were observed for plasma concentration of the different 

B2 and B3 metabolites, showed in Figure 9. TTA treatment was associated with lower 

riboflavin and FMN, whereas NAM and mNAM were strikingly higher compared to control. 

The HF diet was associated with trend toward lower riboflavin (p=0.011) and FMN 

(p=0.044), but no alterations in vitamin B3 status.  

Figure 10 summarizes the results on plasma vitamin B6, folate and B12 status. The HF 

diet was associated with trend toward lower plasma concentration of PA (p=0.17), and higher 

concentrations of folate (p=0.023) and cobalamin (p=0.17). Interestingly, TTA treatment was 

associated with an opposite trend on plasma folate compared to what was seen with HF 

treatment, which was lower compared to control (p=0.024). Furthermore, pronounced higher 

concentrations of plasma PL and MMA were observed in the TTA group when compared to 

control. 
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Figure 9 Results on plasma concentrations of B2 and B3.  The dashed lines represent Cohen’s d = 0.8, and 

the asterix indicates statistical significance. Abbreviations: FMN, flavin mononucleotide; mNAM, N
1
-

methylnicotinamide; NA, nicotinic acid; NAM, nicotinamide. 

 

 

 

Figure 10 Results on plasma concentrations of B6, folate, cobalamin and MMA. The dashed lines 

represent Cohen’s d = 0.8, and the asterix indicates statistical significance. Abbreviations: MMA, 

methylmalonic acid; PA, pyridoxic acid; PL, pyridoxal; PLP, pyridoxal-5-phopsphate. 
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3.2 Urine concentration of metabolites 

All urinary results are depicted in Figure 11 and 12. No between-group differences were 

found according to the urinary concentration of one-carbon metabolites. A pronounced higher 

concentration of MMA was observed with TTA treatment as compared to control. The urinary 

concentration DMG and sarcosine was higher among the animals receiving TTA. 

 

Figure 11 Results on urinary concentrations of one-carbon metabolites and MMA. The dashed lines 

represent Cohen’s d = 0.8, and the asterix indicates statistical significance. Abbreviation: MMA, 

methylmalonic acid. 

 

 

 

Figure 12 Results on urinary concentrations of choline and its oxidation products. The dashed lines 

represent Cohen’s d = 0.8, and the asterix indicates statistical significance. Abbreviation: DMG, indicates 

dimethylglycine. 
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3.3 Correlations between plasma and urine concentrations 

Strong correlations between the plasma concentrations of betaine, DMG and MMA was seen 

with their respective urinary concentrations (r=.59, .82 and .85). No correlations were 

observed for any of the other metabolites analyzed in both plasma and urine. All correlation 

coefficients are provided in the enclosed manuscript Table 3. 

3.4 Post hoc analyses 

The post hoc tests yielded more or less the same results as the planned contrasts, with the 

exceptions of the higher concentrations of urinary DMG (p=0.016) and sarcosine (p=0.019) 

which were only borderline statistically significant. The results of the post hoc tests are 

provided in Table 3 for plasma metabolites and in Table 4 for urinary metabolites. 

 

Table 3 Results from the post hoc tests, plasma metabolites. Dunnet’s test was performed when 

variance was equal, and Dunnet’s T3 was chosen whenever heteroscedasticity was observed.  

 
HF vs. control TTA vs. control 

 
p p 

Methionine 0.91 0.14 

Homocysteine 0.68 0.09 

Cystathionine  0.99 0.018 

Cysteine  0.88 0.25 

Choline 0.16 0.81 

Betaine 0.42 0.72 

DMG 0.34 <0.0001 

Glycine 0.90 0.005 

Serine 0.60 <0.001 

Riboflavin 0.02 0.001 

FMN 0.12 0.001 

NAM 0.77 <0.001 

mNAM 0.90 <0.001 

NA 0.91 0.92 

PLP 0.81 0.82 

PL 0.45 <0.001 

PA 0.29 0.37 

Folate  0.06 0.07 

Cobalamin 0.30 0.52 

MMA 0.95 <0.001 
Abbreviations: DMG, dimethylglycine; FMN, flavin mononucleotide; HF, high fat; mNAM, N

1
-

methylnicotinamide; NA, nicotinic acid; NAM, nicotinamide; PA, pyridoxic acid; PL, pyridoxal; PLP, 

pyridoxal-5-phosphate; MMA, methylmalonic acid; TTA, tetradecylthioacetic acid. 
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Table 4 Results from the post hoc tests, urinary metabolites. Dunnet’s test was performed when 

variance was equal, and Dunnet’s T3 was chosen whenever heteroscedasticity was observed.  

 
HF vs. control TTA vs. control 

 
p p 

Methionine 0.44 0.95 

Homocysteine 0.71 0.24 

Cystathionine 0.78 0.67 

Cysteine 0.56 0.97 

Choline 0.28 0.97 

Betaine 0.99 0.21 

DMG 0.84 0.016 

Sarcosine 0.91 0.019 

Glycine 0.35 0.89 

Serine 0.22 0.85 

MMA 0.97 <0.001 
Abbreviations: DMG, dimethylglycine; HF, high fat; MMA, methylmalonic acid; TTA, tetradecylthioacetic acid.  
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4 Discussion 

4.1 Methodological strengths and limitations 

4.1.1 Experimental procedures 

In this study among male Wistar rats, we studied possible effects of treatment with the pan-

PPAR agonist TTA. Although TTA is known to activate all subtypes of PPAR, it is 

demonstrated to preferentially activate PPARα [134]. TTA was thus previously suggested to 

activate PPARα in a dual manner, both direct and by promoting the synthesis of endogenous 

ligands [134]. Regardless, it is not straightforward to argue that the observations specifically 

result from PPARα activation. However, a proteomic study among the same animals 

investigated in this thesis showed consistent results compared to studies using more specific 

PPARα agonists like WY 14.643 [158-160], which strongly suggests the current findings to 

primarily be a result of PPARα activation. 

A well-known effect of short term TTA-treatment among rodents fed a HF diet is 

reduced weight gain despite higher feed intake [153], which was also observed during long-

term TTA treatment of the rats currently investigated [155]. All animals underwent a surgical 

procedure affecting the gastrointestinal tract, which may potentially affect nutritional status. 

To deal with these issues, a separate experiment was conducted, comparing animals that 

underwent the surgical procedure to animals that did not. It was concluded that the surgery 

did not influence body weight gain or nutritional status [156].  

The long-term dietary intervention is a major strength of the current study, as this 

provides the opportunity to investigate the longitudinal, and not only the acute, effects of 

PPAR activation.  However, when trying to attribute the observations to PPAR activation, one 

cannot exclude that PPAR-independent actions of TTA may also have affected the findings 

[150]. Another advantage of our study is the possibility to examine the effect of dietary fat 

content alone, as dietary fatty acids and their derivatives are also known to bind and activate 

PPARs. It has been suggested that HF feeding enhances the genetic expression of PPARα 

[147], and it was previously demonstrated that increased amount of PPARα was a potent 

enhancer of the induction of target genes following treatment with WY14.643 [144]. This 

may indicate that the effects observed with TTA combined with HF diet may be an 

overestimation of a suggested PPARα effect. However, the PPARα mRNA in liver did not 

differ between the HF and the control group, whereas it was about doubled in the TTA group 
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(data not shown). Nevertheless, also including a group combining the low fat control diet with 

TTA treatment would have been advantageous for the current investigation. 

4.1.2 Differences between rodents and humans 

Lipid metabolism in rodents differs from that among humans, including a markedly higher 

responsiveness to hormonal control among the former. Thus, how data obtained from rodent 

models apply to human physiology may not be adequately addressed [171]. In humans, the 

majority of cholesterol is transported in low-density lipoprotein particles, while in rodents 

cholesterol is transported almost exclusively in high-density lipoprotein particles [172]. Rats 

also differ from humans according to PPAR expression and function. Humans express much 

lower levels of PPARα as compared to rodents [173], and while the liver peroxisomes in rats 

respond to PPARα activation by increasing in number and size, resulting in hepatomegaly and 

liver cancer, this response is not seen in humans [174, 175]. Between-species differences in 

PPAR activity may also be influenced by different availability of several coactivators or 

corepressors [174]. Interspecies differences in PPARα ligand affinity [176] or differences in 

the promoter region of PPARα target genes has also been suggested [177]. Two strains of 

humanized PPARα mice have been generated. Although human PPARα seemed to yield the 

same effects as mouse PPARα on the regulation of lipid metabolism and peroxisome 

proliferation, the human variant did not resemble the distinct hepatomegaly seen in rodent 

models [178, 179]. This was also seen after long-term treatment [180]. As humans possess 

lower expression of PPARs, combined with species differences in lipid metabolism and in the 

response to PPAR activation, extrapolation of results derived from rodent experiments to 

humans is not straightforward, and should mainly be hypothesis generating according to 

human health. 

4.1.3 Statistical methods 

When testing a scientific hypothesis, we calculate the probability of gaining the observed 

results given that no effect really existed, and this is referred to as null-hypothesis testing 

[170]. Our hypothesis was that the intervention groups would differ from control animals, 

thus the corresponding null-hypothesis was that the groups did not differ. The p-value 

represents the probability of obtaining the current results assuming the null-hypothesis is true. 

The level of statistical significance is a preset p-value, usually set at p=0.05, and if the 

obtained p-value is under this threshold of statistical significance, we conclude that the result 

is statistically significant. This provides confidence in rejecting the null-hypothesis, thus 
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strengthening the confidence in the current hypothesis. However, statistical significance is no 

guarantee of the observation representing a genuine effect. If no effect exist, one still could 

expect one p-value to be <0.05 for every 20 test just by chance,  constituting a false positive 

finding (Type 1 error) [170]. The p-value is calculated based on the variance, which is 

majorly affected by sample size. The standard error is calculated by dividing the SD with the 

square root of the sample size, and thus smaller samples will present with larger standard 

errors. Small sample sizes provide poor statistical power, thus increasing the probability of 

not discovering a real effect, also referred to as a false negative (Type 2 error) [170]. In 

general, a smaller sample size requires a larger difference to reach statistical significance and 

vice versa. 

Even though small sample sizes are frequently regarded a major limitation in human 

studies, a small number of samples are rather common in animal studies as the animals may 

be assumed to be more similar to each other as opposed to humans. However, smaller sample 

sizes could be a challenge because the data will seldom be normally distributed. Indeed, 

although most metabolites in the current investigation proved to be normally distributed as 

evaluated with the Kolmogorov-Smirnov test (data not shown), there were some exceptions. 

However, as the three groups were compared with one-way ANOVA, which is regarded to be 

fairly robust to deviations from normal distribution as long as the group sizes are equal, these 

deviations from normality were not regarded a limitation [170]. A statistically significant F-

statistic from the ANOVA does not specifically address which groups differ from each other, 

and such information may be obtained from using planned comparisons or one of several post 

hoc analyses. As we wanted to investigate the associations related to HF feeding or TTA 

treatment compared to low fat feeding, we chose to perform planned comparisons. Ideally, a 

group should only be singled out in one of the comparisons, meaning that the comparisons 

were orthogonal. However, as we compared both intervention groups against the control 

group, the planned contrasts were non-orthogonal. This prompts for careful interpretation of 

the results, as the p-values for the various between-group comparisons will be somewhat 

related to each other. Hence, it is appropriate to select a more strict cutoff for statistical 

significance [170]. The statistical analyses were not adjusted for multiple comparisons, which 

increases the probability of obtaining false positive results. Such adjustment could have been 

done by Bonferroni correction, dividing the level of statistical significance by the number of 

analyses performed, thus controlling the rate of Type 1 errors. However, such adjustment 
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tends to be too conservative when performing a large number of analyses [170]. Hence, we 

chose to set the cutoff for statistical significance at p<0.01.  

Notably, a recently published paper called for care to be taken when interpreting p-

values, as these are demonstrated to underestimate the probability of discovering false 

positives and are majorly affected by sample size [181]. The article emphasized the 

importance of estimating effect sizes, as these are not affected by sample size and provide 

valuable information about the magnitude and relative importance of an effect [181]. Even if 

an analysis does not reach statistical significance, one cannot exclude the existence of an 

effect. It simply suggests that the potential effect is not large enough to be found in the current 

study [170]. Actually, it has been underlined by the American Psychology Association that 

one always should present some estimates of the effect size alongside the p-values [182]. 

According to this, we mainly focus on the Cohen’s d effect sizes when evaluating the findings 

in this study, giving information on the extent of the differences observed. Also, information 

on effect sizes is of importance when executing power calculations of future studies [182].  

4.2 The targeted metabolomic approach 

Research fields like genomics and transcriptomics provide information about the genome and 

the expression of genes, while proteomics deal with measurement of protein levels in 

biological tissues. Downstream these fields we find metabolomics, which refer to the analysis 

of molecules present in biologic mediums such as blood, urine or tissue – the metabolome. 

[183]. The metabolomic approach can be used to distinguish between groups based on the 

metabolic profile, which may be useful both in treatment and prevention of disease [184]. A 

metabolomic approach with an initial hypothesis and focus on certain metabolites, like the 

current study, is categorized as targeted metabolomics [183]. 

Metabolomics has been proposed as an essential tool to understand the function of 

PPARα, not least to investigate the clinical effects of different PPARα-agonists [185]. An 

untargeted urinary metabolomic study was carried out in 2007, where both wild-type and 

PPARα-null mice were treated with WY14.643 to identify specific urinary biomarkers 

reflecting PPARα activity [186]. Two years later, another metabolomics investigation was 

performed on rats treated with fenofibrate [187]. Among other markers, an increase in the 

urinary excretion of several metabolites in the tryptophan-niacin pathway was discovered 

after PPARα activation, suggesting these to be potential biomarkers of PPARα activity.   
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4.3 Discussion of results 

In this study, long-term supplementation with TTA was associated with pronounced 

alterations in plasma concentrations of metabolites along the choline oxidation pathway and 

markers of B-vitamin status in rats when compared to a low-fat control diet. The most 

pronounced differences were observed for plasma concentrations of DMG, NAM, mNAM 

and MMA, which were all higher, and FMN and PL which were lower in the TTA group. In 

urine, higher concentrations of DMG and sarcosine, as well as MMA, were observed in the 

TTA group. No statistically significant between-group differences were observed according to 

the amount of dietary fat, neither in plasma nor urine. 

4.3.1 Effect of dietary fat content 

Compared to the low-fat control group, no statistically significant differences were observed 

in either systemic or urinary metabolite concentrations for the HF group. However, the small 

sample size may have impeded statistical significance, as some of the observed differences 

reached the threshold of what was considered a large effect. No between-group differences 

were observed in the concentration of one-carbon metabolites (Figure 7). In the choline 

oxidation pathway, the HF diet was associated with trends towards lower choline and betaine 

while DMG was slightly higher compared to control diet (Figure 8). HF treatment was also 

associated with trends toward lower vitamin B2 (Figure 9) as well as higher circulating folate 

and cobalamin (Figure 10) concentrations. It has been suggested that dietary fat promotes flux 

through BHMT in mice, with observed increases in both mRNA and protein levels of BHMT. 

These findings were accompanied by decreased hepatic concentrations of betaine, and the HF 

treatment also led to increased expression of PPARα mRNA as well as some selected target 

genes [147]. As previously mentioned, betaine supplementation is shown to increase the 

genetic expression of PPARα [146], and the amount of PPARα protein is closely related to 

PPARα mRNA expression [144]. These observations point towards an elevated PPARα 

expression following HF feeding, and that increased flux through BHMT is involved. Hence, 

there was reason to believe that the HF group could have had a higher expression of PPARα 

as compared to the control group in the current study. This was further supported by the 

trends toward lower plasma betaine and higher DMG concentrations among TTA treated rats, 

being in accordance with what has been previously observed in mice receiving a HF diet 

[147]. However, no differences in PPARα mRNA according to dietary fat were observed in 

the liver (data not shown) in the current study, rendering this explanation unlikely. Lack of 

statistical significant differences according to dietary fat thus implies that the availability of 
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PPARα agonists is not sufficient to lead to any substantial changes, as that seen with the TTA 

treatment in this study. This suggests that the availability of such ligands may predominantly 

be determined by metabolic or genetic factors and not by diet alone. Indeed, PPARα 

expression alone does not affect PPARα target gene expression in the absence of a PPARα 

ligand [144]. Other possible explanations could be 1) species-differences between mice and 

rats, 2) that the amount of fat given to the HF group in the current study was not high enough 

to replicate previous findings, or 3) that the dietary intervention in our study lasted long 

enough for the rats to adapt to the HF diet. The mice in the previous investigation were given 

34% (w/w) fat for twelve weeks [147], whereas the HF treated rats in our study received 25% 

(w/w) fat for 50 weeks.  

4.3.2 TTA treatment and homocysteine metabolism 

Plasma cystathionine was higher in the TTA group, which may indicate reduced flux 

through the transsulfuration pathway, a previously suggested feature of PPARα activation 

[158] and TTA treatment [160]. Additionally, trends toward higher levels of plasma tHcy and 

lower Met were observed among the TTA-treated rats, both reaching the threshold of what 

was considered a large effect (Figure 7). Elevated tHcy concentrations is also a known effect 

from fibrate treatment [157], most probably due to enhanced PPARα activation. Elevated 

tHcy may be due to increased production. It is generally believed that the synthesis of creatine 

and choline are the major metabolic sources of Hcy [26], but also the endogenous synthesis of 

carnitine may be of importance, as each molecule of carnitine produced consumes three 

molecules of SAM [188]. Notably, carnitine synthesis is demonstrated to be upregulated by 

PPARα activation [189, 190], and has also been shown after TTA treatment [155]. Elevated 

tHcy may also be caused by reduced remethylation. Reduced Hcy remethylation through MS 

may be due to lower availability of cobalamin, as indicated by the higher concentrations of 

MMA observed in the TTA treated rats. Also, lower concentrations of vitamin B2 may have 

affected this remethylation pathway as it 1) is involved in the production of mTHF [89] and 2) 

is important for the function of MSR [114], which maintains MS function.  

As elevated plasma tHcy may be caused by disturbances in either the remethylation or 

the transsulfuration pathways, it is of interest to note that these metabolic pathways are known 

to be regulated by redox status, where increased oxidative stress inhibits the former [29, 30] 

and activates the latter [19]. Disturbances in redox balance is thus suggested to be a possible 

mechanism causing hyperhomocysteinemia [191]. This represents another aspect of one-
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carbon metabolism possibly influenced by PPARα activity as both PPARα activation [139-

143] and TTA treatment [149, 154] are shown to have anti-inflammatory and anti-oxidative 

effects.  

4.3.3 TTA treatment and the choline oxidation pathway 

Several metabolites along the choline oxidation pathway strongly differed between the rats 

receiving TTA and the control rats (Figure 8). A particularly pronounced difference was 

observed for DMG, the plasma and urine concentrations of which were higher in TTA-treated 

animals. Higher urinary DMG concentrations probably indicate a spill-over effect from higher 

plasma concentrations, as suggested by the strong correlation between blood and urinary 

concentrations. DMG is solely produced from betaine in the BHMT reaction [68], and is 

either excreted in the urine or catabolized to sarcosine and further to glycine inside the 

mitochondrion [57]. Higher concentrations of plasma DMG may thus be a result of increased 

production, decreased catabolism or urinary excretion, or a combination thereof. As PPARα 

activation is demonstrated to reduce the genetic transcription [158] and protein level [159] of 

the DMG catabolizing enzymes, the latter of which also was shown with TTA treatment 

[160], decreased catabolism is probably a major contributor to elevated plasma DMG in the 

current study. It was not possible to determine plasma sarcosine due to analytical interference 

from the EDTA in tubes used for blood sampling. However, we can assume that higher 

urinary sarcosine concentrations among TTA treated rats reflects higher circulating levels, as 

the urinary concentration of both betaine and DMG correlated strongly with their respective 

plasma concentrations. In addition to the apparent direct negative effect of PPARα activation 

on the expression of these enzymes, both DMGDH and SARDH are dependent on vitamin 

B2. A TTA induced reduction in vitamin B2 levels may thus contribute to decreased DMG 

catabolism. Vitamin B2 is also essential in the MTHFR related making of mTHF [89], the 

donor for MS-mediated Hcy remethylation. If folate-dependent remethylation of Hcy is 

reduced, this may lead to a compensatory increase in BHMT flux, hence also DMG 

production, to fulfill the requirements for Hcy remethylation [51]. Hence, the higher 

concentration of plasma and urinary DMG is probably influenced both by reduced catabolism 

and increased production.  

Apart from DMG catabolism, sarcosine may also be formed in the cell cytosol from 

methylation of glycine by GNMT. However, as PPARα activation is demonstrated to reduce 

GNMT mRNA [158], the increased urinary concentration of sarcosine is most probably not a 
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result of increased cytosolic sarcosine production. In fact, a reduced GNMT flux due to 

PPARα activation may have contributed to the higher plasma concentrations of glycine and 

serine observed among TTA-treated rats, by decreasing glycine catabolism to sarcosine.  

PPARα activation is generally assumed to reduce amino acid catabolism [138], and higher 

plasma concentrations of both glycine and serine have previously been reported with 

fenofibrate treatment [187]. Correspondingly, higher concentrations of most amino acids were 

observed in plasma after TTA treatment [155]. Metabolic sources of glycine are depicted in 

Figure 13. In addition to the SARDH reaction, which most probably is inhibited by PPARα-

dependent downregulation of SARDH mRNA, glycine may be formed reversibly from serine 

by SHMT [87], and results from in vitro studies have suggested that this is primarily carried 

out by the mitochondrial SHMT2 [192]. Serine is an end product of glycolysis, but as PPARα 

is known to inhibit glycolytic activity [133, 136] this may not be a substantial source of either 

serine or glycine in the current study. A third option for glycine synthesis is by threonine 

catabolism initiated by NAD-dependent threonine dehydrogenase (EC 1.1.1.103), which is 

known to be the major pathway of threonine catabolism in rats [161]. The circulating 

concentrations of threonine in the TTA treated animals currently investigated was higher as 

compared to the HF group [155], making this a possible metabolic source of glycine. A fourth 

source of glycine is carnitine biosynthesis [188], and it has previously been demonstrated that 

carnitine synthesis is upregulated by PPARα activation [189, 190]. Notably, a previous study 

of the same animals investigated in this thesis found a TTA-induced increase of most genes in 

carnitine synthesis [155]. Thus, it is plausible that the major source of higher glycine 

concentration is through upregulated carnitine synthesis combined with reduced catabolism 

through GNMT and a possible contribution from threonine degradation. Interestingly, the 

cytosolic isoform of SHMT is suggested to be involved in carnitine synthesis as it seems to be 

identical to 3-hydroxytrimethyllysine aldolase (EC 4.1.2.X), one of the key enzymes in the 

carnitine synthesis pathway which, like SHMT, is shown to be dependent on vitamin B6 [193, 

194]. This further underlines the interrelationship of these metabolic pathways, including B-

vitamin status. Serine is a substrate for the first enzyme of the transsulfuration pathway, 

where it condenses with Hcy to form cystathionine [14]. As already mentioned, PPARα is 

suggested to reduce transsulfuration flux [158], which suggests the higher serine 

concentrations to at least in part be related to decreased catabolism through transsulfuration.  

No difference between the TTA group and control were observed for neither choline 

nor betaine concentration in plasma (Figure 12). As discussed above, the HF treatment was 
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associated with a trend towards lower concentrations of both these metabolites. This may be 

explained by a saturation of BHMT flux among TTA treated rats caused by the considerably 

higher plasma concentrations of DMG, as it is demonstrated that DMG is a potent inhibitor of 

BHMT activity [4, 195]. Also, an increased flux through BHMT following HF feeding is 

thought to increase the genetic expression of PPARα. Thus, one might suggest that increased 

PPARα activity following TTA treatment would abolish this mechanism. 

 

Figure 13 Major metabolic sources of glycine. Glycine may be derived from the choline oxidation pathway, 

from the glycolytic pathway, from threonine degradation or as a product of carnitine biosynthesis. BHMT 

indicates betaine-homocysteine methyltransferase; DMG, dimethylglycine; DMGDH, dimethylglycine 

dehydrogenase, GNMT, glycine N-methyltransferase; Hcy, homocysteine; Met, methionine; SARDH, sarcosine 

dehydrogenase; SHMT, serine hydroxymethyltransferase 

4.3.4 TTA and plasma vitamin B2 status 

Among TTA treated rats, lower concentrations of both riboflavin and FMN were observed 

(Figure 9). Also, rats receiving the HF diet alone had a trend towards lower concentrations of 

these metabolites compared to the control group. As several enzymes in the metabolic 

pathways discussed are dependent on vitamin B2 as a cofactor, reduced availability of this 

vitamin is likely of importance for the activity of these enzymes, including MTHFR, MSR, 

CHDH, DMGDH and SARDH. In a previous metabolomic study on fenofibrate treatment, 

higher concentration of riboflavin was reported both in plasma and urine at day 14 [187]. 

However, no information was given on the composition of the diet, and in the current study 

the B2 vitamers were lower also among the HF treated rats as compared to control. This 

suggests that the lower plasma concentration of riboflavin and FMN observed with TTA 
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treatment in the current investigation may be prone to interference from dietary fat intake, and 

possibly also a PPAR-independent effect by TTA.  

4.3.5 TTA and plasma vitamin B3 

A marked increase was observed for the concentration of the vitamin B3 metabolite NAM and 

the breakdown product mNAM in the TTA treatment group (Figure 9). As NAM is produced 

during catabolism of tryptophan, an effect on this metabolic pathway may be a potential 

causal mechanism explaining the observation. Previously, an increased conversion of 

tryptophan to niacin was observed after PPARα activation in rats [196], and increased hepatic 

concentrations of NAD was shown with clofibrate treatment [197]. Treatment with PPARα 

agonists, such as clofibrate and WY14.643, has been reported to increase the activity of 

quinolinate phosphoribosyltransferase (EC 2.4.2.19) [198] as well as reducing the genetic 

transcription and activity of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (EC 

4.1.1.45), which are key enzymes in the tryptophan catabolic pathway in both rats [158, 198-

200] and mice [201]. These alterations in gene expression favor the production of NAM, and 

both NAM and mNAM concentrations have been observed to be higher in urine after PPARα 

activation in rodents [158, 186, 187, 199, 200] 

NAD(P) is also an important electron carrier in the β-oxidation of fatty acids, which is 

well known to be stimulated by PPARα activation. As fibrate treatment has been shown to 

enhance the hepatic concentrations of NAD [197], altered concentrations of vitamin B3 

metabolites may be related to increased requirements caused by a PPARα-mediated 

stimulation of fatty acid catabolism. Indeed, it has been suggested that upregulation of the 

tryptophan-niacin pathway is a response to the increased requirements of NAD for β-

oxidation [199]. 

4.3.6 TTA, vitamin B6 and inflammation 

Pronouncedly higher concentrations of PL were observed among the TTA treated as 

compared to the control rats (Figure 10). However, no between-group differences were found 

for either PLP or PA. Even though PLP was comparable between the groups, TTA treatment 

seems to result in a marked increase in systemic vitamin B6 concentrations. As the production 

of PLP is shown to be dependent on vitamin B2 as a cofactor [100], lower availability of B2 

in the TTA treatment group is a possible explanation of these observations. As PLP is not able 

to cross cell membranes, it has to be converted to PL. This conversion is catalyzed by alkaline 

phosphatase, and notably, alkaline phosphatase activity was previously shown to be 
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upregulated after PPARα activation in rats [202]. Thus, this may partly explain why we 

observe higher concentrations of PL after TTA treatment. 

B6 deficiency has previously been reported to be associated with increased oxidative 

stress and inflammation [101-103]. Thus, our observations may be regarded markers of 

attenuated oxidative stress and inflammation, features previously demonstrated by PPARα 

activation [139-143] and TTA treatment [149, 154]. Another way of presenting the B6 status 

is by calculating the ratio of PA to the total PL and PLP. This PA-ratio was recently 

demonstrated to be a more sensitive and reliable marker of inflammation than the other 

markers of vitamin B6 status [203]. Increasing PA-ratio may represent either enhanced 

catabolism of B6 as seen during inflammation, or redistribution of PL and PLP between the 

intracellular, extracellular and the blood compartment [203]. The higher concentration of PL 

among the TTA treated rats lower the PAR, further supporting the argument of the TTA 

treated rats having a reduced level of inflammation.  

4.3.7 TTA treatment and folate metabolism 

Plasma folate was lower in the TTA compared to control group (Figure 10). Interestingly, the 

HF treatment seemed to have the opposite effect. None of these differences reached statistical 

significance, but the effect sizes were nevertheless large. As previously mentioned, limited 

availability of vitamin B2 as seen in the TTA treated rats may have reduced the production of 

mTHF. The precursor of mTHF, MTHF, may be synthesized by two different enzymes, 

namely MTHFD1 and SHMT1. It is previously demonstrated that SHMT1-derived MTHF is 

primarily partitioned towards de novo synthesis of thymidylate and not remethylation of Hcy 

[91, 92]. As SHMT1 is a PLP-dependent enzyme, higher availability of this cofactor may also 

enhance MTHF synthesis through this pathway. The production of MTHF through MTHFD1 

is dependent on sufficient supply of formate, such as the formate derived from the 

mitochondrial demethylation reactions of the choline oxidation pathway, conversion of serine 

to glycine and from glycine catabolism through the glycine cleavage system (Figure 2). As 

PPARα activation is inhibiting the transcription of several enzymes involved in these 

reactions, the formate production may be decreased. Thus, more MTHF is possibly 

originating from the SHMT1 reaction, supporting the hypothesis that mTHF synthesis is 

reduced due to MTHF being increasingly partitioned towards thymidylate synthesis, in 

addition to the decreased availability of vitamin B2 as cofactor for MTHFR.  
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4.3.8 TTA treatment and vitamin B12 

Another striking between-group difference was observed for MMA, with much higher plasma 

and urinary concentrations observed in the TTA treated rats as compared to the rats receiving 

the control diet (Figure 10). However, no difference was found between the groups regarding 

plasma cobalamin, suggesting a TTA-induced functional, albeit not overt, cobalamin 

deficiency. MMACHC, the chaperone responsible for making cobalamin available for MS 

and mut, is dependent on vitamin B2 and glutathione for its function [113]. Additionally, 

MSR, an enzyme crucial for maintaining MS activity and function, is also dependent on 

vitamin B2 [114]. Reduced availability of vitamin B2 may thus be of major importance for 

the observed increase in MMA. Lower grade of inflammation as discussed earlier, in addition 

to the suggested PPARα-mediated inhibition of the transsulfuration pathway [158], could 

cause a reduction in glutathione synthesis [19], further contributing to the proposed reduction 

in MMACHC function. If the TTA treatment is contributing to such a metabolic cobalamin 

deficiency through PPARα activation, this also sheds further light on the higher concentration 

of DMG by reducing MS function as previously discussed.  
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5 Conclusion 
In this study, we have demonstrated that PPAR activation with the pan-PPAR agonist TTA is 

associated with altered blood and urinary concentrations of one-carbon metabolites and 

markers of B-vitamin status. A particular large effect was observed for DMG, NAM, mNAM 

and MMA, which were all higher among TTA-treated rats. Based on current and previous 

results, these effects are probably mainly mediated through PPARα, but future investigations 

need to address the issue of relating these effects to a specific PPAR subtype using more 

subtype specific agonists as well as evaluating the additional effects of dietary fat. 

6 Future perspectives 

Today, dietary advice is generally based on mean effects found in large epidemiological 

studies. Such studies will not be able to take individual variability into account, and 

subgroups of participants who may respond in opposite directions will thus not be revealed. 

When evaluating whole populations this may wrongly be interpreted as a null-effect, hence 

increasing the risk of making Type 2 errors. Extremely large sample sizes and the exploration 

of several relationships simultaneously will increase the experimental error rate by yielding 

many statistically significant associations having small effect sizes [204], hence increases the 

probability of making Type 1 errors. Personalized nutrition has been used to treat rare, inborn 

errors of metabolism like phenylketonuria. Under such circumstances, metabolic factors lay 

the foundation for very specific dietary advice. However, recent research is addressing the 

implementation of a similar approach aimed at the general population, targeting personalized 

nutrition [205]. 

As PPARs play a central role as master regulators of metabolism, biomarkers of PPAR 

activity, among which several are proposed in the current study, could help identifying 

subgroups which could benefit of certain nutritional advice. Hence, more research using the 

targeted metabolomics approach to explore PPAR function is warranted. The results of the 

current study suggested elevated plasma DMG, MMA, and the B3 metabolites NAM and 

mNAM as candidate biomarkers of PPARα activity, but as TTA is a pan-PPAR agonist, these 

metabolites should also be evaluated in animal models using more subtype-specific PPAR 

agonists. Such a study has recently been conducted in our research group, where both specific 

agonists and antagonists of PPARα and PPARγ, respectively, were used. The results from this 

study may shed further light on the relationship between PPARs and the one-carbon 

metabolism related metabolome and B-vitamin status in blood and urine. In this study, gene 
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expression of already established PPAR targeted genes and also genes involved in one-carbon 

metabolism will be measured, exploring the metabolome in light of PPAR regulation. 

The applicability of these putative biomarkers of PPARα activity to humans is another 

aspect which should be targeted in future studies. First, associations between diet and clinical 

outcome should be addressed in subgroup analyses of existing cohorts, preferably randomized 

controlled trials, where the participants are stratified according to their metabolic profile 

[206]. Such analyses are already being conducted in our research group, based on cohort 

studies of patients with stabile angina [207] and acute myocardial infarction [208]. However, 

it should be noted that subgroup analyses increases the number of statistical tests performed, 

thus increasing the likelihood of Type 1 errors [209]. It should also be kept in mind that in a 

large data set, lots of spurious subgroup differences will exist [209]. Also, as the number of 

participants and clinical events in the various subgroups is reduced as compared to the total 

population, the statistical power decreases, increasing the risk of Type 2 errors [206]. These 

limitations should thus be kept in mind when performing such analyses, and subgroup effects 

arising from post hoc hypotheses should always be validated in a different data set [209]. 

Findings from the screening studies should in the end lead to randomized dietary 

intervention trials where participants receive dietary advice according to their metabolic 

profile, and the ultimate aim will be to discover biomarkers which could be used as basis for 

individualization of nutritional advice. 
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Abstract 

Introduction: Increased systemic concentrations of metabolites along the choline oxidation 

pathway have previously been linked to adverse cardiovascular risk, and altered genetic 

transcription of key enzymes mediated by the peroxisome proliferator-activated receptors 

(PPARs) may be involved. We investigated the effect of PPAR activation on blood and urine 

concentrations of one-carbon metabolites and markers of B-vitamin status in rats. 

Methods: During 50 weeks, Male Wistar rats received either a low fat control diet, a high fat 

(HF) diet or a HF diet supplemented with tetradecylthioacetic acid (TTA), a pan-PPAR 

agonist with pronounced affinity towards PPARα. Blood and urine samples were analyzed, 

and results were compared by one-way ANOVA. Planned comparisons versus control were 

made for both intervention groups, and we report the respective Cohen’s d effect sizes. 

Results: Essentially no between-group differences were observed in blood or urine according 

to dietary fat intake. However, compared to control, TTA-treated animals had higher plasma 

dimethylglycine (d=5.05), glycine (d=1.3), serine (d=1.99) and cystathionine (d=1.52), 

nicotinamide (d=6.4), methylnicotinamide (d=4.05), methylmalonic acid (d=3.98) and 

pyridoxal (d= 2.73), whereas plasma riboflavin (d= -1.6) and flavin mononucleotide (d= -

2.22) were lower. Urinary concentrations of dimethylglycine (d=1.98), sarcosine (d=1.16) and 

methylmalonic acid (d=1.89) were higher among TTA treated rats (p <0.01 for all 

comparisons).  

Conclusion: Long-term TTA treatment was associated with pronounced alterations in blood 

and urinary concentrations of one-carbon and choline metabolites, as well as markers of B-

vitamin status in rats. Our findings add to the evidence of the one-carbon metabolism being 

regulated by PPARs.  
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Introduction 

Elevated plasma total homocysteine (tHcy) is related to increased risk of cardiovascular 

disease (CVD) [1], but lowering tHcy with B-vitamins has not improved prognosis among 

CVD patients [2], questioning a causal relationship. This encourages investigation into novel 

mechanisms associated with elevated plasma tHcy [3]. Of interest, circulating and urinary 

concentrations of various metabolites along the choline oxidation pathway have been related 

to major lifestyle diseases, including CVD and diabetes [4-8]. We have recently shown that 

higher plasma dimethylglycine (DMG)  concentration is associated with increased risk of 

acute myocardial infarction as well as total and cardiovascular mortality, independent of 

traditional risk markers such as elevated plasma tHcy [6, 7].  

Homocysteine (Hcy) reside at a branch point of three metabolic pathways. 

Remethylation of Hcy back to methionine is catalyzed either by the cobalamin-dependent 

methionine synthase (MS) or betaine-homocysteine methyltransferase (BHMT), using 5-

methyltetrahydrofolate (mTHF) or betaine as the methyl donor, respectively.  Hcy catabolism 

to form cysteine is carried out by the vitamin B6 dependent transsulfuration pathway [9] (Fig 

1). The choline oxidation pathway is linked to Hcy metabolism through BHMT. This reaction 

produces DMG [10], and flux through BHMT has been shown to be associated with 

demethylation of the promoter region of the Peroxisome proliferator-activated receptor 

(PPAR) α gene in mice, resulting in increased expression of PPARα and its target genes [11]. 

DMG is further oxidized to sarcosine and glycine by the two mitochondrial flavoproteins 

DMG dehydrogenase (DMGDH) and sarcosine dehydrogenase (SARDH) [12]. In rats, 

activation of PPARα was demonstrated to reduce the transcription of both DMGDH and 

SARDH [13]. PPARα activation also affects the genetic expression of both enzymes of the 

transsulfuration pathway in rats [13], further supporting a relationship between PPARs and 

the one-carbon and choline metabolism. Hence, we previously suggested that the association 

between elevated DMG concentrations and CVD risk may partly be explained by enhanced 

PPARα activity [6, 7]. 

 PPARα is a key regulator of energy metabolism [14], with a vast number of identified 

target genes [15]. This nuclear receptor is shown to be activated by dietary or endogenous 

fatty acids and their derivatives [16]. Tetradecylthioacetic acid (TTA) is a sulfur-containing 

fatty acid analogue and pan-PPAR agonist with a pronounced affinity towards PPARα [17], 

and recently, long-term TTA treatment was associated with lower protein levels of DMGDH 
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and SARDH in rats [18]. Whether TTA treatment affects the related metabolites has not been 

previously investigated. While the status of folate, B6 and B12 is known to influence tHcy 

concentration in blood [19], the relation between B-vitamins and other one-carbon 

metabolites are not fully elucidated. Most reactions in the metabolic pathways discussed 

depends on B-vitamins as cofactors, and accordingly, their availability is likely important. 

PPARα regulate key enzymes in the synthesis of vitamin B3 from tryptophan [20], but 

whether PPARα activation influences the status of other B-vitamins are uncertain. 

 Thus, in the current substudy, we aimed to investigate the association between PPAR 

activation, by either a high fat (HF) diet alone or additional TTA supplementation, and blood 

and urinary concentrations of components of the choline oxidation pathway and one-carbon 

metabolites, as well as systemic markers of B-vitamin status.  

Methods 

Animals and diets 

The animals (n=30) were randomly allocated to receive one out of three diets for 50 weeks:  

1) A low fat control diet (Control) with 7% fat (5% lard, 2% soybean oil, w/w); 2) a HF diet 

with 25% fat (23% lard, 2% soybean oil, w/w); 3) a HF diet supplemented with TTA 

treatment (22.6% lard, 2% soybean oil, 0.4% TTA, w/w). All diets were isoenergetic and 

isonitrogenous (20% protein, w/w), had the same amounts of micronutrients, and the rats had 

free access to water and feed. Casein (Tine BA, Oslo, Norway) was used as the protein 

source. Fat sources were lard (Ten Kate Vetten BV, Musselkanaal, The Netherlands) and 

soybean oil (Dyets Inc., Bethlehem, Pa, USA). TTA was provided by the Lipid Research 

Group (Department of Clinical Science, University of Bergen, Bergen, Norway). Tert-butyl-

hydroquinon was obtained from Sigma-Aldrich (St. Louis, MO, USA), and the rest of the 

ingredients (cornstarch, sucrose, fiber, AIN-93 G mineral mix, AIN-93 vitamin mix, L-

cysteine and choline bitartrate) were obtained from Dyets Inc (Bethlehem, Pa, USA). The 

pellets were made by Nofima Ingredients (Bergen, Norway). The animals investigated were 

part of a larger study, and more detailed description of this experiment has previously been 

reported [21]. 

After 50 weeks, 4-6 h into the light cycle, the animals were sacrificed under non-

fasting conditions, anaesthetized by Isofluorane (Forane, Abbott Laboratories, Abbott Park, 

IL, USA) inhalation. Blood was drawn by cardiac puncture and collected in BD Vacutainer 
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tubes containing EDTA (Becton-Dickinson, Plymouth, UK). Urine was collected directly 

from the urinary bladder. 

The animal experiments were designed to comply with the Guidelines for the Care and 

Use of Experimental Animals and the study protocol was approved by the Norwegian State 

Board for Biological Experiments with Living animals. 

Biochemical analyses 

Except plasma cobalamin, which was measured in seven rats per group due to limited 

amounts of plasma, blood metabolites were analyzed in 10 rats per group. Urinary specimens 

were not available for all rats. In the control group, 9 urine samples were available for 

methionine, choline, betaine and DMG, while 8 samples were available for tHcy, 

cystathionine, cysteine, sarcosine, glycine, serine and MMA. In the HF group, all urinary 

analytes were available for 9 animals, while 8 values were obtained for all analytes among 

TTA treated rats. All analyzes were performed at Bevital A/S (Bergen, Norway, 

http://www.bevital.no). In plasma, methylmalonic acid (MMA), tHcy, serine and glycine were 

analyzed by gas chromatography- tandem mass spectrometry (GC-MS/MS) [22]. Plasma 

choline, betaine, DMG, methionine and cysteine [23], as well as all vitamin B2, B3, and B6 

metabolites, cystathionine and the B3 catabolite N
1
-methylnicotinamide [24] were analyzed 

by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma folate and 

cobalamin were measured by microbiological assays [25, 26]. In urine, cysteine, 

cystathionine, sarcosine, glycine, serine and MMA were measured by GC-MS/MS [22], and 

methionine, choline, betaine and DMG by LC-MS/MS [23]. 

Statistical analyses and presentation of data 

The results are presented as means (standard deviation [SD]), and between-group differences 

were tested by one-way analysis of variance (ANOVA). We carried out planned contrasts to 

compare both intervention groups to the control group. Cohen’s d effect sizes were calculated 

by pooling the SDs and are provided for all comparisons.  

The concentrations of urinary metabolites were corrected for urine creatinine 

concentrations, to adjust for dilution. We evaluated the relationship between plasma and 

urinary concentrations of metabolites by calculating Pearson’s correlation coefficients. 

Statistics were performed by using IBM SPSS Statistics for Windows, version 21 (SPSSIBM., 
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NY, USA). Because the results were not adjusted for multiple comparisons, p-values <0.01 

were considered statistically significant. A d >0.8 were considered a large effect [27]. 

Results 

Mean (± SD) concentrations for all plasma and urinary metabolites and results from the 

comparisons are presented in Tables 1 and 2, respectively. HF treated rats did not 

significantly differ from the control group on any of the analyzed metabolites. Compared to 

rats receiving the control diet, rats treated with TTA differed in most metabolites and markers 

of B-vitamin status. For components of the transsulfuration pathway, higher concentration of 

plasma cystathionine was observed (d=1.52, p=.006). Along the choline oxidation pathway, 

rats in the TTA intervention group had higher concentrations of plasma DMG (d=5.05, 

p<.001), glycine (d=1.3, p=.003) and serine (d=1.99, p<.001). In urine, higher concentrations 

were observed for DMG (d=1.98, p=.006) and sarcosine (d=1.16, p=0.01). 

Among the B-vitamers and metabolites, we observed lower concentrations of plasma 

riboflavin (d=-1.6, p<.001) and FMN (d=-2.22, p<.001) whereas plasma nicotinamide (NAM) 

(d=6.4, p<.001), N
1
-methylnicotinamide (mNAM) (d=4.05, p<.001) and pyridoxal (PL) 

(d=2.73, p<.001) were higher in the TTA treated rats as compared to control. Plasma folate 

tended to be lower (d=-1.15, p=0.024) whereas no difference was observed for plasma 

cobalamin, albeit the plasma concentrations of the functional marker of cobalamin deficiency, 

MMA, was higher (d=3.98, p<.001) in the TTA treated group. Accordingly, urine 

concentration of MMA was also significantly higher in TTA treated rats when compared to 

those receiving the control diet (d=1.89, p<0.001). The largest effect sizes observed in plasma 

are shown in figure 2. 

As shown in Table 3, there were positive correlations between plasma and urinary 

betaine (r=.59), DMG (r=.82) and MMA (r=.85) concentrations. 

Discussion 

Main Findings 

This long-term, 50 week, animal study indicates that TTA treatment was associated with 

pronounced effects on systemic concentrations of metabolites along the choline oxidation 

pathway and one-carbon metabolism, as well as markers of B-vitamin status. The largest 

effect sizes were observed for plasma concentrations of DMG, NAM, mNAM and MMA, 

which were all higher, and FMN and PL which were lower in the TTA group.  
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Previous studies 

The PPARs have been thoroughly explored according to their role in lipid and glucose 

metabolism, but the relationship between PPARs and other metabolic pathways has only 

recently gained some attention. Involvement of PPARα in amino acid metabolism has been 

demonstrated [28], and fibrates, which are specific PPARα ligands have consistently been 

associated with elevated plasma tHcy [29].  For components of the choline oxidation pathway, 

treatment with the specific PPARα agonist WY14,643 has demonstrated a reduction in 

DMGDH and SARDH mRNA in rats [13] and lower protein level of SARDH in mice 

[30].These results are in accordance with the previously reported proteomic findings among 

the animals currently investigated [18]. Moreover, as TTA is known to preferentially activate 

PPARα over the other PPAR subtypes [17], our observations are most likely mediated mainly 

through PPARα. The present study thus extends previous findings by demonstrating that 

PPARs also likely affect the flux through the choline oxidation pathway and one-carbon 

metabolism pathways, as well as the status of closely related B-vitamins. 

Possible mechanisms 

TTA treatment and the choline oxidation pathway 

The particularly high concentration of DMG associated with TTA treatment could be 

explained by TTA induced alterations in DMG production, catabolism, urinary excretion or a 

combination thereof. At least part of the association is probably explained by decreased 

catabolism of both DMG and sarcosine, as supported by the lower protein levels of DMGDH 

and SARDH among TTA-treated animals in the current investigation [18]. Data on plasma 

sarcosine could have shed further light on a potential accumulation of metabolites 

downstream of DMG, but unfortunately we were not able to determine sarcosine in plasma 

due to analytical interference from the EDTA in tubes used for blood sampling. However, 

urinary concentrations of both DMG and sarcosine were higher in the TTA treated rats, 

indicating a spill-over effect from higher plasma concentrations. This was further supported 

by the strong correlations between plasma and urinary concentrations of DMG and betaine. 

Sarcosine can also be produced from glycine in the cell cytosol, via glycine N-

methyltransferase (GNMT). As PPARα is suggested to inhibit flux through GNMT [13, 30], 

decreased cellular sarcosine production may contribute to the higher plasma concentrations of 

glycine and serine among the TTA treated rats. Moreover, glycine may be formed from serine 

which can be derived through glycolysis [31], which is known to be inhibited by PPARα [15]. 
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Thus, higher plasma concentrations are probably not due to increased flux through the 

glycolytic pathway. Another possibility of glycine synthesis is from threonine catabolism 

[31], and as the plasma threonine concentration was markedly higher in the TTA treated rats 

[32], threonine degradation is a possibly contributing to increased glycine concentrations. 

Notably, increased glycine concentration could also be related to enhanced carnitine synthesis 

[33], and as both PPARα activation [34] and TTA treatment [32] is associated with increased 

activity of this pathway, it is reasonable to suspect this pathway being a main contributor to 

the elevated glycine concentration.  

Lower circulating B2 vitamers were observed in the TTA treated rats compared to 

those in the control group. Both DMGDH and SARDH are flavoproteins [35], and lower 

availability of the B2-vitamers may thus directly reduce DMG catabolism. Moreover, folate-

dependent remethylation of Hcy utilizes mTHF, which is produced from 

methylenetetrahydrofolate by methylenetetrahydrofolate reductase (MTHFR). The activity of 

MS is also dependent on another enzyme, MS reductase (MSR), and notably, both MTHFR 

and MSR are flavoproteins [36, 37]. Thus, reduced MS flux due to lower availability of 

vitamin B2, also suggested by a trend towards lower plasma folate in the TTA treated rats, 

may reflect a compensatory increase in BHMT-mediated remethylation, enhancing DMG 

production.   

The current findings therefore suggest that higher DMG concentration may be 

explained by a combination of increased production and decreased catabolism, and lower 

availability of B2-vitamers may be involved in both mechanisms. The elevated concentrations 

of glycine and serine may be due to PPARα-dependent increased synthesis of carnitine in 

addition to decreased cellular sarcosine production, with a possible contribution from 

threonine degradation which should be evaluated in future studies. 

TTA treatment and vitamin B3 

B3 vitamers are cofactors for a vast number of enzymatic redox reactions, thereof in the β-

oxidation of fatty acids and in substrate oxidation in Krebs cycle [38]. In one-carbon 

metabolism related pathways, NADP is used as a reducing agent for both MTHFR and MSR 

[36, 37], as well as in the production of betaine from betaine aldehyde [39]. The primary 

cofactor form, nicotinamide adenine dinucleotide (phosphate) (NAD(P)), is formed from the 

precursors NAM and NA, and in the current study TTA treatment was associated with 

significant higher concentrations of NAM and also its breakdown metabolite mNAM. PPARα 
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activation by WY14.643 was previously suggested to increase the production of NAM 

originating from the catabolism of tryptophan [13, 20, 40], and accordingly, such treatment 

has consistently been associated with elevated urinary concentrations of both NAM and 

mNAM [13, 41, 42]. Higher concentrations of NAM and mNAM observed in the TTA group 

may thus be due to PPARα-induced increased production, and may also be related to 

increased requirements for vitamin B3 due to enhanced β-oxidation, a well-known PPARα 

effect [43].  

TTA treatment and vitamin B6 

The transsulfuration pathway is activated by oxidative stress [44], and systemic vitamin B6 

deficiency has previously been associated with both increased oxidative stress [45] and 

inflammation [46]. Of the B6 vitamers, only PL differed significantly between groups, with 

higher concentration being observed in the TTA group. Although the most commonly used 

marker of vitamin B6 status is PLP, the total amount of circulating vitamin B6 is regarded a 

more precise measurement of B6 status [47]. Higher total plasma vitamin B6,  as indicated by 

the much higher PL among TTA treated rats, may therefore suggest treatment induced lower 

inflammation and oxidative stress, consistent with the anti-inflammatory and anti-oxidative 

effects seen by PPARα activation [48, 49] and TTA treatment [50, 51].  

TTA treatment and vitamin B12 status 

The only known biological function of cobalamin is to serve as a cofactor for the enzymes 

MS and methylmalonyl-Coenzyme A mutase (Mut). Mut catalyzes the catabolism of 

methylmalonyl-Coenzyme A in the mitochondria. During cobalamin deficiency, MMA is 

formed from methylmalonyl-CoA (Fig 1), hence plasma MMA is utilized as a clinical marker 

of cobalamin deficiency [52]. The intracellular processing of cobalamin is complex and 

involves several chaperones. Of particular interest is the methylmalonic aciduria combined 

with homocystinuria type C (MMACHC) protein, a flavoprotein responsible for making free 

cobalamin available for production of the two cofactor forms [53]. Dealkylation of cobalamin 

by MMACHC is dependent on glutathione transferase activity [54], linking cobalamin 

metabolism to the transsulfuration pathway, as the latter is a substantial source of cysteine, the 

limiting amino acid for glutathione synthesis [55]. In our study, higher concentrations of 

MMA were observed in both plasma and urine among the TTA treated rats. Plasma cobalamin 

concentration, however, were unaffected, indicating a metabolic cobalamin deficiency not 

associated with low circulating cobalamin. Because MMACHC is dependent on vitamin B2, 
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lower availability of B2-vitamers may have contributed to the higher MMA concentrations. 

Lower flux through the transsulfuration pathway, as previously suggested with PPARα 

activation [13], and supported by the higher plasma cystathionine concentrations in the TTA 

group, may also have contributed due to the role of glutathione in MMACHC function. As 

cobalamin is a crucial cofactor for MS, a functional cobalamin deficiency may also contribute 

to increased DMG production caused by a compensatory enhanced BHMT-flux, as discussed 

above. 

Taken together, the current as well as previous studies suggest that various pathways 

of the one-carbon and choline oxidation pathways may interconnect with and be regulated by 

PPARα related mechanisms, probably both through a direct effect on important enzymes and 

by influencing the availability of B-vitamin cofactors. 

Strengths and limitations 

The main strength of this study is its controlled, long-term dietary intervention design. 

Although we cannot establish a certain time-dependent effect by TTA, the large and highly 

statistically significant between-group differences in terms of concentrations of several 

metabolites are suggestive of an effect by the TTA intervention per se. Extrapolation of the 

results to humans may, however, not be straightforward, as PPARα affects rodents differently 

and to a larger extent than humans [56, 57]. It is also important to keep in mind that blood 

concentrations of the various metabolites do not necessarily reflect their extravascular or 

intracellular concentrations, prompting carefulness in the interpretation in terms of metabolic 

flux [58].  

Clinical application 

The involvement of PPARs in all aspects of nutrient metabolism is well established. Thus, 

information on the activity of PPARs, and PPARα in particular, may be of future interest 

when considering tailored treatment or nutritional advice to the individual person. 

Metabolomics has been proposed as an important tool to understand PPARα function [42], 

and targeted metabolic profiling focusing on one-carbon metabolites may prove to supply 

valuable information regarding PPAR activity. 

Conclusions 

We have demonstrated that long-term treatment with the pan-PPAR agonist TTA is associated 

with altered plasma and urinary concentration of several one-carbon and choline metabolites, 
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as well as markers of B-vitamin status in rats, with the largest effect sizes observed for plasma 

DMG, NAM, mNAM and MMA. Our findings should motivate further investigation into the 

relationship between PPARs and these metabolic pathways. 
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Table 1. Plasma concentration of one-carbon metabolites, choline oxidation products and markers of B-vitamin status, according to dietary 

intervention group. 

 Dietary treatment group  ANOVA  HF vs. Control
 

 TTA vs. Control 

 Control  HF  TTA  p†  d p‡  d p‡ 

One-carbon metabolites, µmol/L             

 

Methionine 73.3 ± 9.72
  71.7 ± 10.8  65.3  ± 8.7  0.18  -0.16 0.716  -0.87 0.080 

 

tHcy 7.2 ± 1.8  7.9 ± 2.5  9.3  ± 2.5  0.13  0.35 0.467  0.98 0.047 

 

Cystathionine 0.64 ± 0.11  0.65 ± 0.13  1.02 ± 0.34  0.002  0.06 0.905  1.52 0.006 

 

Cysteine 171.4 ± 30.9  166.2 ± 20.8  189.3 ± 28.3  0.15  -0.20 0.670  0.60 0.150 

Choline metabolites, µmol/L         

 

Choline 9.2 ± 1.4  7.8 ± 1.6  10.0 ± 2.9  0.09  -0.91 0.057  0.36 0.439 

 

Betaine 78.9 ± 15.5  68.0 ± 12.7  72.4 ± 31.2  0.52  -0.77 0.262  -0.27 0.498 

 

DMG 4.4 ± 1.2  5.6 ± 2.0  15.5 ± 2.9  <0.001  0.75 0.207  5.05 0.000 

 

Glycine 283.1 ± 45.5  268.6 ± 54.2  408.6 ± 129.0  0.002  -0.29 0.706  1.30 0.003 

 

Serine 368.9 ± 45.  408.0 ± 78.7  586.9 ± 148.4  <0.001  0.61 0.392  1.99 <0.001 

Markers of B-vitamin status             

 B2 vitamers, nmol/L             

  Riboflavin  27.1 ± 7.7  19.0 ± 4.4  15.1 ± 7.3  0.001  -1.29 0.011  -1.6 <0.001 

  FMN  24.5 ± 11.0  14.3 ± 10.1  6.3 ± 3.6  0.001  -0.97 0.044  -2.22 <0.001 

 B3 vitamers, nmol/L             

  NAM  1658 ± 432  1832 ± 467  6138 ±890  <0.001  0.39 0.544  6.4 <0.001 

  mNAM 88.2 ± 93.1  50.7 ± 22.6  1154.0 ± 360.2  <0.001  -0.55 0.244  4.05 <0.001 

  NA  83.2 ± 20.2  79.8 ± 18.9  86.7 ± 26.1  0.78  -0.18 0.695  0.15 0.728 

 B6 vitamers, nmol/L             

  PLP  260.7 ± 40.7  243.8 ± 54.2  277.3 ± 99.5  0.57  -0.35 0.591  0.22 0.596 

  PL  2271 ± 34.7  207.6 ± 26.5  350.3 ± 53.5  <0.001  -0.63 0.283  2.73 0.000 

  PA  40.5 ± 9.7  30.9 ± 4.4  32.0 ± 24.5  0.33  -1.27 0.175  -0.46 0.226 

 Folate, nmol/L 66.9 ± 6.4  86.3 ± 22.1  53.1 ± 15.7  0.001  1.19 0.023  -1.15 0.024 

 Cobalamin, pmol/L
 

613 ± 42  671 ± 68  654 ± 107  0.37  1.03 0.173  0.5 0.333 

 MMA, µmol/L 0.35 ± 0.08  0.37 ± 0.09  1.04 ± 0.23  <0.001  0.21 0.646  3.98 <0.001 
DMG indicates dimethylglycine; FMN, flavin mononucleotide; HF, high fat; LF, low fat; MMA, methylmalonic acid; mNAM, N

1
-methylnicotinamide; NA, nicotinic acid; 

NAM, nicotinamide; PA, pyridoxic acid; PL, pyridoxal; PLP, pyridoxal-5-phosphate; tHcy, total homocysteine, TTA, tetradecylthioacetic acid 

†One-way ANOVA 

‡Planned contrasts 



 

Table 2. Urinary concentrations of one-carbon metabolites, choline oxidation products and methylmalonic acid, according to dietary intervention 

group. The values are adjusted according to urinary creatinine concentration. 

 Dietary treatment group
  ANOVA  HF vs Control  TTA vs Control 

 Control
  HF

  TTA
  p†  d p‡  d p‡ 

One-carbon metabolites, µmol/L             

 

Methionine 81.5 ± 65.2  150.4 ± 132.0  100.3 ± 98.3  0.36  0.66 0.19  0.23 0.65 

 

tHcy 0.94 ± 0.45  1.1 ± 0.48  1.31 ± 0.54  0.32  0.36 0.49  0.76 0.14 

 

Cystathionine 7.6 ± 9.18  10.6 ± 7.5  11.6 ± 14.2  0.73  0.36 0.56  0.34 0.45 

 

Cysteine 41.4 ± 34.9  56.9 ± 37.9  45.0 ± 29.6  0.63  0.42 0.37  0.11 0.82 

Choline metabolites, µmol/L         

 

Choline 333 ± 369  842 ±1088  414 ± 617  0.33  0.63 0.17  0.16 0.83 

 

Betaine 23.2 ± 10.5  23.0 ± 8.96  32.8 ± 16.5  0.20  -0.02 0.96  0.70 0.19 

 

DMG 7.4 ± 4.5  10.4 ± 11.3  45.2 ± 27.5  0.003  0.35 0.48  1.98 0.006 

 Sarcosine 0.67 ± 0.44  0.97 ± 0.79  3.11 ± 2.94  0.02  0.46 0.73  1.16 0.01 

 

Glycine 162 ± 115  295 ± 226  202 ± 134  0.25  0.73 0.15  0.31 0.54 

 

Serine 349 ± 296  685 ± 544  453 ± 412  0.26  0.75 0.13  0.29 0.64 

Markers of B-vitamin status             

 MMA, µmol/L 3.26 ± 1.49  3.04 ± 1.40  8.21 ± 3.39  <0.001  -0.16 0.84  1.89 <0.001 

DMG indicates dimethylglycine; HF, high fat; MMA, methylmalonic acid; tHcy, total homocysteine; TTA, tetradecylthioacetic acid 

† One-way ANOVA 

‡Planned contrasts 

 

 



 

 

Table 3. Correlations between blood and urinary metabolites in all rats 

 
r (CI)1 

P†
 

Methionine 0.02 (-0.34, 0.43) 0.91 

tHcy 0.17 (-0.01, 0.23) 0.43 

Cystathionine 0.21 (-0.09, 0.56) 0.31 

Cysteine 0.01 (-0.40, 0.46) 0.96 

Choline -0.06 (-0.51, 0.29) 0.78 

Betaine 0.59 (0.05, 0.85) 0.002 

DMG 0.82 (0.65, 0.94) <0.001 

Glycine 0.00 (-0.3, 0.38) 0.99 

Serine -0.02 (-0.38, 0.35) 0.93 

MMA 0.85 (0.77, 0.93) <0.001 
DMG indicates dimethylglycine; MMA, methylmalonic acid; tHcy, total homocysteine. 
1
Pearsons correlation coefficient with bootstrapped confidence intervals 

†p-value for correlation 

  



 

Figure legends 

 

Fig 1. 

Overview of relevant metabolic pathways. 5-mTHF indicates methyltetrahydrofolate; 5,10-

MTHF, methylenetetrahydrofolate; BHMT, betaine-homocysteine methyltransferase; CBS, 

cystathionine β-synthase; CGL, cystathionine-γ-lyase; DMG, dimethylglycine; DMGDH, 

dimethylglycine dehydrogenase; Gly, glycine; GNMT, glycine N-methyltransferase; Hcy, 

homocysteine;  Met, methionine; MMA, methylmalonic acid; MM-CoA, methylmalonyl 

coenzyme A; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase; Mut, 

methylmalonyl-CoA mutase; Sarc, sarcosine; SARDH, sarcosine dehydrogenase; Ser, serine; 

SHMT, serine-hydroxymethyltransferase; THF, tetrahydrofolate;  

Fig 2. 

Cohen’s d effect sizes for the most pronounced differences in plasma metabolite 

concentrations between the high fat diet alone and TTA treatment as compared to the control 

diet. The dashed lines represent Cohen’s=0.8 and the asterix indicates p<0.001. DMG 

indicates dimethylglycine; FMN, flavin mononucleotide; MMA, methylmalonic acid; NAM, 

nicotinamide; PL, pyridoxal. 

  



 

  



 

 

 




